Nutrient Cycling in Agroecosystems

, Volume 106, Issue 2, pp 169–183 | Cite as

Greenhouse gas intensity and net ecosystem carbon budget following the application of green manures in rice paddies

Original Article


Green manure application has been a good fertility management for crop growth and soil quality, but its effect on greenhouse gas intensity (GHGI) and net ecosystem carbon budget (NECB) of rice ecosystem is not well understood. Two green manure species, alfalfa (Medicago sativa L.) and broad beans (Vicia faba L.), and two N fertilization levels (0 and 200 kg ha−1), alone or in combination, were applied to rice paddy soils in 2012 and 2013. The results show that the grain yields increased by 25.36, 29.81, and 41.85 % for the N fertilizer, N + broad bean, and N + alfalfa treatments, respectively, compared with the no fertilizer. CH4 and N2O emissions increased by 50.77 and 36.11 %, 30.70 and 75.04 % in N + broad bean and N + alfalfa treatments, respectively, compared to N fertilizer treatment. The average CH4 and N2O emissions were 37.47 and 63.22 % higher in 2013 than in 2012, respectively, whereas the average soil temperature during the rice growth period was 2.1 °C higher in 2013 than in 2012. The highest value in GHGI was associated with the N + broad bean treatment (with a high C/N ratio), while the NECB and mass of soil total carbon change (MSTC) were highest in the N + alfalfa treatment (with a low C/N ratio). This result indicates that high C/N ratio green manures had high grain yields yet increased GHGI, while low C/N ratio green manures had even higher grains yields with increased NECB and MSTC.


Alfalfa Greenhouse gases Q10 Net global warming potential Net ecosystem carbon budget 



This work was financially supported by the National Natural Science Foundation of China (No. 31572451), the Science and Technology Commission of Shanghai (Nos. 13JC1403200 and 15391912400), and Committee of Shanghai agriculture (No. 2013-5-10).

Supplementary material

10705_2016_9797_MOESM1_ESM.tiff (601 kb)
Supplementary material 1 Supplementary Fig. S1: Variations in daily air temperature and average soil temperature at 5 cm depth for each gas sampling time during the rice growing period in 2012 and 2013. (TIFF 601 kb)


  1. Aulakh MS, Khera TS, Doran JW, Bronson KF (2001) Denitrification, N2O and CO2 fluxes in rice-wheat cropping system as affected by crop residues, fertilizer N and legume green manure. Biol Fert Soils 34:375–389. doi: 10.1007/s003740100420 CrossRefGoogle Scholar
  2. Banger K, Tian H, Lu C (2012) Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields? Global Change Biol 18:3259–3267. doi: 10.1111/j.1365-2486.2012.02762.x CrossRefGoogle Scholar
  3. Butterbach-bahl K, Papen H, Rennenberg H (1997) Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant, Cell Environ 20:1175–1183. doi: 10.1023/A:1004263405020 CrossRefGoogle Scholar
  4. Cai Z, Xing G, Yan X, Xu H, Tsuruta H, Yagi K, Minami K (1997) Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management. Plant Soil 196:7–14. doi: 10.1023/A:1004263405020 CrossRefGoogle Scholar
  5. Chapin F III, Woodwell G, Randerson JT, Rastetter EB, Lovett G, Baldocchi DD, Clark D et al (2006) Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9:1041–1050. doi: 10.1007/s10021-005-0105-7 CrossRefGoogle Scholar
  6. Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D et al (2007) Couplings between changes in the climate system and biogeochemistry. Climate change 2007. The physical science basis. Cambridge University Press, CambridgeGoogle Scholar
  7. Dong H, Yao Z, Zheng X, Mei B, Xie B, Wang R, Deng J et al (2011) Effect of ammonium-based, non-sulfate fertilizers on CH4 emissions from a paddy field with a typical Chinese water management regime. Atmos Environ 45:1095–1101. doi: 10.1016/j.atmosenv.2010.11.039 CrossRefGoogle Scholar
  8. FAO (1993) Report of the regional expert consultation on the sustainability of the rice-wheat production system in different agro-ecological settings in Asia. RAPA report: 120. Food and Agriculture Organization Bangkok, ThailandGoogle Scholar
  9. Froseth RB, Bakken AK, Bleken MA, Riley H, Pommeresche R, Thorup-Kristensen K, Hansen S (2014) Effects of green manure herbage management and its digestate from biogas production on barley yield, N recovery, soil structure and earthworm populations. Eur J Agron 52:90–102. doi: 10.1016/j.eja.2013.10.006 CrossRefGoogle Scholar
  10. Gao X, Lv A, Zhou P, Qian Y, An Y (2015) Effect of green manures on rice growth and plant nutrients under conventional and no-tillage systems. Agron J 107:2335–2346. doi: 10.2134/agronj15.0225 CrossRefGoogle Scholar
  11. Ghani A, Dexter M, Perrott K (2003) Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biol Biochem 35:1231–1243. doi: 10.1016/S0038-0717(03)00186-X CrossRefGoogle Scholar
  12. Gong Z, Wang Y, Wang Z, Ma L, Sun C, Zhang S (2014) Briefly analysis on climate anomalies and causations in summer 2013. Meteorol Mon 40(1):119–125Google Scholar
  13. Haque MM, Kim SY, Pramanik P, Kim GY, Kim PJ (2013) Optimum application level of winter cover crop biomass as green manure under considering methane emission and rice productivity in paddy soil. Biol Fert Soils 49:487–493. doi: 10.1007/s00374-012-0766-2 CrossRefGoogle Scholar
  14. Haque MM, Sang YK, Ali MA, Kim PJ (2014) Contribution of greenhouse gas emissions during cropping and fallow seasons on total global warming potential in mono-rice paddy soils. Plant Soil 387(1–2):251–264. doi: 10.1007/s11104-014-2287-2 Google Scholar
  15. Huang Y, Zhang W, Sun W, Zheng X (2007) Net primary production of Chinese croplands from 1950 to 1999. Ecol Appl 17:692–701. doi: 10.1890/05-1792 CrossRefPubMedGoogle Scholar
  16. Jia J, Ma Y, Xiong Z (2012) Net ecosystem carbon budget, net global warming potential and greenhouse gas intensity in intensive vegetable ecosystems in China. Agr Ecosyst Environ 150:27–37. doi: 10.1016/j.agee.2012.01.011 CrossRefGoogle Scholar
  17. Ju XT, Xing GX, Chen XP, Zhang SL, Zhang LJ, Liu XJ, Cui ZL et al (2009) Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc Natl Acad Sci 106:3041–3046. doi: 10.1073/pnas.0813417106 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kätterer T, Börjesson G, Kirchmann H (2014) Changes in organic carbon in topsoil and subsoil and microbial community composition caused by repeated additions of organic amendments and N fertilisation in a long-term field experiment in Sweden. Agric Ecosyst Environ 189:110–118. doi: 10.1016/j.agee.2014.03.025 CrossRefGoogle Scholar
  19. Khan S, Mulvaney R, Ellsworth T, Boast C (2007) The myth of nitrogen fertilization for soil carbon sequestration. J Environ Qual 36:1821–1832. doi: 10.2134/jeq2007.0099 CrossRefPubMedGoogle Scholar
  20. Kim SY, Lee CH, Gutierrez J, Kim PJ (2013) Contribution of winter cover crop amendments on global warming potential in rice paddy soil during cultivation. Plant Soil. doi: 10.1007/s11104-012-1403-4 Google Scholar
  21. Kimura M, Murase J, Lu YH (2004) Carbon cycling in rice field ecosystems in the context of input, decomposition and translocation of organic materials and the fates of their end products (CO2 and CH4). Soil Biol Biochem 36:1399–1416. doi: 10.1016/j.soilbio.2004.03.006 CrossRefGoogle Scholar
  22. Kubo M, Purevdorj M (2004) The future of rice production and consumption. J Food Distrib Res 35:128–142Google Scholar
  23. Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627. doi: 10.1126/science.1097396 CrossRefPubMedGoogle Scholar
  24. Li Y (2011) The effect of fertilizer on broad beans and soil nutrients in Qinghai. Hubei Agric Sci 50:684–688Google Scholar
  25. Li J, Lee X, Yu Q, Tong X, Qin Z, Macdonald B (2011) Contributions of agricultural plants and soils to N2O emission in a farmland. Biogeosci Discuss 8:5505–5535. doi: 10.5194/bgd-8-5505-2011 CrossRefGoogle Scholar
  26. Linquist BA, Adviento-Borbe MA, Pittelkow CM, van Kessel C, van Groenigen KJ (2012) Fertilizer management practices and greenhouse gas emissions from rice systems: a quantitative review and analysis. Field Crop Res 135:10–21. doi: 10.1016/j.atmosenv.2010.11.039 CrossRefGoogle Scholar
  27. Ma J, Li X, Xu H, Han Y, Cai Z, Yagi K (2007) Effects of nitrogen fertiliser and wheat straw application on CH4 and N2O emissions from a paddy rice field. Soil Res 45:359–367. doi: 10.1071/SR07039 CrossRefGoogle Scholar
  28. Ma Y, Kong X, Yang B, Zhang X, Yan X, Yang J, Xiong Z (2013) Net global warming potential and greenhouse gas intensity of annual rice–wheat rotations with integrated soil–crop system management. Agric Ecosyst Environ 164:209–219. doi: 10.1016/j.agee.2012.01.011 CrossRefGoogle Scholar
  29. Ma L, Gao X, Zhang J, Lv A, Zhou P, An Y (2014) Growth and nutrient dynamics of non-fall dormancy and semi-fall dormancy alfalfa cultivars in winter fallow land of south-east China. Chin J Grassl 36:38–45Google Scholar
  30. Mandal B, Majumder B, Adhya TK, Bandyopadhyay PK, Gangopadhyay A, Sarkar D, Kundu MC et al (2008) Potential of double-cropped rice ecology to conserve organic carbon under subtropical climate. Global Change Biol 14:2139–2151. doi: 10.1111/j.1365-2486.2008.01627.x CrossRefGoogle Scholar
  31. Melero S, Porras JCR, Herencia JF, Madejon E (2006) Chemical and biochemical properties in a silty loam soil under conventional and organic management. Soil Till Res 90:162–170. doi: 10.1016/j.still.2005.08.016 CrossRefGoogle Scholar
  32. Ni K, Ding W, Zaman M, Cai Z, Wang Y, Zhang X, Zhou B (2012) Nitrous oxide emissions from a rainfed-cultivated black soil in Northeast China: effect of fertilization and maize crop. Biol Fert Soils 48:973–979. doi: 10.1007/s00374-012-0709-y CrossRefGoogle Scholar
  33. Pittelkow CM, Adviento-Borbe MA, Hill JE, Six J, van Kessel C, Linquist BA (2013) Yield-scaled global warming potential of annual nitrous oxide and methane emissions from continuously flooded rice in response to nitrogen input. Agric Ecosyst Environ 177:10–20. doi: 10.1016/j.agee.2013.05.011 CrossRefGoogle Scholar
  34. Robertson GP, Grace PR (2004) Greenhouse gas fluxes in tropical and temperate agriculture: the need for a full-cost accounting of global warming potentials. Springer, BerlinGoogle Scholar
  35. Smith P, Lanigan G, Kutsch WL, Buchmann N, Eugster W, Aubinet M, Ceschia E et al (2010) Measurements necessary for assessing the net ecosystem carbon budget of croplands. Agric Ecosyst Environ 139:302–315. doi: 10.1016/j.agee.2010.04.004 CrossRefGoogle Scholar
  36. Song CC, Xu XF, Tian HQ, Wang YY (2009) Ecosystem-atmosphere exchange of CH4 and N2O and ecosystem respiration in wetlands in the Sanjiang Plain, Northeastern China. Glob Change Biol 15:692–705. doi: 10.1111/j.1365-2486.2008.01821.x CrossRefGoogle Scholar
  37. Tokida T, Fumoto T, Cheng W, Matsunami T, Adachi M, Katayanagi N, Matsushima M et al (2010) Effects of free-air CO2 enrichment (FACE) and soil warming on CH4 emission from a rice paddy field: impact assessment and stoichiometric evaluation. Biogeosciences 7:2639–2653. doi: 10.5194/bg-7-2639-2010 CrossRefGoogle Scholar
  38. Tong X, Li J, Zhang X, Yu Q, Qin Z, Zhu Z (2007) Mechanism and bio-environmental controls of ecosystem respiration in a cropland in the North China plains. N Z J Agric Res 50:1347–1358. doi: 10.1080/00288230709510422 CrossRefGoogle Scholar
  39. Tong C, Wang C, Huang JF, Wang WQ, Yan E, Liao J, Yao C (2014) Ecosystem respiration does not differ before and after tidal inundation in brackish marshes of the Min River estuary, southeast China. Wetlands 34(2):225–233. doi: 10.1007/s13157-013-0478-x CrossRefGoogle Scholar
  40. United States Department of Agriculture (2011) Carbon to nitrogen ratios in cropping systems.
  41. Yang WH, Teh YA, Silver WL (2011) A test of a field-based 15N-nitrous oxide pool dilution technique to measure gross N2O production in soil. Glob Change Biol 17:3577–3588. doi: 10.1111/j.1365-2486.2011.02481.x CrossRefGoogle Scholar
  42. Yao Z, Zheng X, Dong H, Wang R, Mei B, Zhu J (2012) A 3-year record of N2O and CH4 emissions from a sandy loam paddy during rice seasons as affected by different nitrogen application rates. Agric Ecosyst Environ 152:1–9. doi: 10.1016/j.agee.2012.02.004 CrossRefGoogle Scholar
  43. Zhang L, Song C, Zheng X, Wang D, Wang Y (2007) Effects of nitrogen on the ecosystem respiration, CH4 and N2O emissions to the atmosphere from the freshwater marshes in northeast China. Environ Geol 52:529–539. doi: 10.1007/s00254-006-0485-9 CrossRefGoogle Scholar
  44. Zhang Y, Xu M, Chen H, Adams J (2009) Global pattern of NPP to GPP ratio derived from MODIS data: effects of ecosystem type, geographical location and climate. Glob Ecol Biogeogr 18:280–290. doi: 10.1111/j.1466-8238.2008.00442.x CrossRefGoogle Scholar
  45. Zhang X, Fan C, Ma Y, Liu Y, Li L, Zhou Q, Xiong Z (2014a) Two approaches for net ecosystem carbon budgets and soil carbon sequestration in a rice–wheat rotation system in China. Nutr Cycl Agroecosyst 100:301–313. doi: 10.1007/s10705-014-9651-8 CrossRefGoogle Scholar
  46. Zhang X, Yin S, Li Y, Zhuang H, Li C, Liu C (2014b) Comparison of greenhouse gas emissions from rice paddy fields under different nitrogen fertilization loads in Chongming Island, Eastern China. Sci Total Environ 472:381–388. doi: 10.1016/j.scitotenv.2013.11.014 CrossRefPubMedGoogle Scholar
  47. Zhang T, Wang G, Yang Y, Mao T, Chen X (2015) Non-growing season soil CO2 flux and its contribution to annual soil CO2 emissions in two typical grasslands in the permafrost region of the Qinghai-Tibet Plateau. Eur J Soil Biol 71:45–52. doi: 10.1016/j.ejsobi.2015.10.004 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.Key Laboratory of Urban Agriculture (South), Ministry of AgricultureShanghaiPeople’s Republic of China
  3. 3.Shanghai Urban Forest Research StationState Forestry AdministrationShanghaiPeople’s Republic of China

Personalised recommendations