Nutrient Cycling in Agroecosystems

, Volume 101, Issue 3, pp 285–294 | Cite as

Nitrogen cycle responses to elevated CO2 depend on ecosystem nutrient status

  • Tobias Rütting
  • Louise C. Andresen
Review Article


Nitrogen (N) limitation of terrestrial ecosystems is a crucial factor for predicting how these ecosystems respond and feedback to climate change. Nitrogen availability for plants in terrestrial ecosystems depends on the internal soil N cycle and inputs to the ecosystem via biological N2 fixation. We reviewed the effect of elevated atmospheric CO2 concentrations (eCO2) on gross soil N transformations to advance our understanding of ecosystem responses to eCO2. Overall, neither gross mineralization nor gross nitrification was altered by eCO2. However, emerging from ecosystem specific analysis, we propose a new conceptual model for eCO2 effects on gross mineralization based on ecosystem nutrient status: gross mineralization is only stimulated in N limited ecosystems, but unaffected in phosphorus limited ecosystems. Moreover, the ratio of ammonium oxidation to immobilization is decreased under eCO2, indicating a tighter N cycle with reduced ecosystem N losses. This new conceptual model on N cycle responses to eCO2 should be tested in the future in independent experiments and it provides a new concept for refining mechanistic models of ecosystem responses to climate change.


Elevated CO2 Climate change Nitrogen cycle Gross rates Nutrient limitation Progressive nitrogen limitation Phosphorus limitation 



Prof. L. Klemedtsson for valuable discussion; financially support by the strategic research area BECC (Biodiversity and Ecosystem services in a Changing Climate, and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS).

Supplementary material

10705_2015_9683_MOESM1_ESM.pdf (13 kb)
Supplementary material 1 (PDF 13 kb)


  1. Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372CrossRefPubMedGoogle Scholar
  2. Andresen LC, Michelsen A, Jonasson S, Beier C, Ambus P (2009) Glycine uptake in heath plants and soil microbes responds to elevated temperature, CO2 and drought. Acta Oecol 35:786–796CrossRefGoogle Scholar
  3. Barnard R, Leadley PW, Hungate BA (2005) Global change, nitrification, and denitrification: a review. Global Biogeochem Cycles 19:GB1007. doi: 10.1029/2004GB002282 CrossRefGoogle Scholar
  4. Barnard R, Barthes L, Leadley PW (2006) Short-term uptake of 15N by a grass and soil micro-organisms after long-term exposure to elevated CO2. Plant Soil 280:91–99CrossRefGoogle Scholar
  5. Björsne A-K, Rütting T, Ambus P (2014) Combined climate factors alleviate changes in gross soil nitrogen dynamics in heathlands. Biogeochemistry. doi: 10.1007/s10533-10014-19990-10531 Google Scholar
  6. De Graaff MA, Van Groenigen KJ, Six J, Hungate BA, Van Kessel C (2006) Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Glob Change Biol 12:2077–2091CrossRefGoogle Scholar
  7. De Graaff MA, Six J, Van Kessel C (2007) Elevated CO2 increases nitrogen rhizodeposition and microbial immobilization of root-derived nitrogen. New Phytol 173:778–786CrossRefPubMedGoogle Scholar
  8. De Graaff MA, Van Kessel C, Six J (2009) Rhizodeposition-induced decomposition increases N availability to wild and cultivated wheat genotypes under elevated CO2. Soil Biol Biochem 41:1094–1103CrossRefGoogle Scholar
  9. Dijkstra FA, Pendall E, Mosier AC, King JY, Milchunas DG, Morgan JA (2008) Long-term enhancement of N availability and plant growth under elevated CO2 in a semi-arid grassland. Funct Ecol 22:975–982CrossRefGoogle Scholar
  10. Dijkstra FA, Carrillo Y, Pendall E, Morgan JA (2013) Rhizosphere priming: a nutrient perspective. Front Microbiol 4:216CrossRefPubMedCentralPubMedGoogle Scholar
  11. Drake JE et al (2011) Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2. Ecol Lett 14:349–357CrossRefPubMedGoogle Scholar
  12. Drigo B, Kowalchuk GA, Van Veen JA (2008) Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biol Fertil Soils 44:667–679CrossRefGoogle Scholar
  13. Dukes JS et al (2005) Responses of grassland production to single and multiple global environmental changes. PLoS Biol 3:e319. doi: 10.1371/journal.pbio.0030319 CrossRefPubMedCentralPubMedGoogle Scholar
  14. Edwards EJ, McCaffery S, Evans JR (2006) Phosphorus availability and elevated CO2 affect biological nitrogen fixation and nutrient fluxes in a clover-dominated sward. New Phytol 169:157–167CrossRefPubMedGoogle Scholar
  15. Falster DS, Warton DI, Wright IJ (2003) (S)MATR: standardised major axis tests and routines.
  16. Finzi AC, Schlesinger WH (2003) Soil-nitrogen cycling in a pine forest exposed to 5 years of elevated carbon dioxide. Ecosystems 6:444–456CrossRefGoogle Scholar
  17. Friedlingstein P, Prentice IC (2010) Carbon-climate feedbacks: a review of model and observation based estimates. Curr Opin Environ Sustain 2:251–257CrossRefGoogle Scholar
  18. Hartwig UA, Sadowsky MJ (2006) Biological nitrogen fixation: a key process for the response of grassland ecosystems to elevated atmospheric [CO2]. In: Nösberger J et al (eds) Managed ecosystems and CO2 case studies, processes, and perspectives, vol 187., Ecological StudiesSpringer, Berlin, pp 325–336CrossRefGoogle Scholar
  19. Hendrey GR, Miglietta F (2006) FACE technology: past, present, and future. In: Nösberger J et al (eds) Managed ecosystems and CO2 case studies, processes, and perspectives, vol 187., Ecological studiesSpringer, Berlin, pp 5–43Google Scholar
  20. Hofmockel KS, Schlesinger WH, Jackson RB (2007) Effects of elevated atmospheric CO2 on amino acid and NH4 +–N cycling in a temperate pine ecosystem. Glob Change Biol 13:1950–1959CrossRefGoogle Scholar
  21. Holmes WE, Zak DR, Pregitzer KS, King JS (2003) Soil nitrogen transormations under Populus tremuloides, Betual papyrifera and Acer saccharum following 3 years exposure to elevated CO2 and O3. Glob Change Biol 9:1743–1750CrossRefGoogle Scholar
  22. Holmes WE, Zak DR, Pregitzer KS, King JS (2006) Elevated CO2 and O3 alter soil nitrogen transformations beneath trembling aspen, paper birch, and sugar maple. Ecosystems 9:1354–1363CrossRefGoogle Scholar
  23. Hu SJ, Tu C, Chen X, Gruver JB (2006) Progressive N limitation of plant response to elevated CO2: a microbiological perspective. Plant Soil 289:47–58CrossRefGoogle Scholar
  24. Hungate BA, Chapin FS III, Zhong H, Holland EA, Field CB (1997a) Stimulation of grassland nitrogen cycling under carbon dioxide enrichment. Oecologia 109:149–153CrossRefGoogle Scholar
  25. Hungate BA, Lund CP, Pearson HL, Chapin FS III (1997b) Elevated CO2 and nutrient addition alter soil N cycling and N trace gas fluxes with early season wet-up in a California annual grassland. Biogeochemistry 37:89–109CrossRefGoogle Scholar
  26. Hungate BA, Dijkstra P, Johnson DW, Hinkle CR, Drake BG (1999) Elevated CO2 increases nitrogen fixation and decreases soil nitrogen mineralization in Florida scrub oak. Glob Change Biol 5:781–789CrossRefGoogle Scholar
  27. Hungate BA, Dukes JS, Shaw MR, Luo Y, Field CB (2003) Nitrogen and climate change. Science 302:1512–1513CrossRefPubMedGoogle Scholar
  28. Hungate BA et al (2004) CO2 elicits long-term decline in nitrogen fixation. Science 304:1291CrossRefPubMedGoogle Scholar
  29. Hungate BA et al (2009) Assessing the effect of elevated CO2 on soil C: a comparison of four meta-analyses. Glob Change Biol 15:2020–2034CrossRefGoogle Scholar
  30. Iversen CM, Hooker TD, Classen AT, Norby RJ (2011) Net mineralization of N at deeper soil depths as a potential mechanism for sustained forest production under elevated [CO2]. Glob Change Biol 17:1130–1139CrossRefGoogle Scholar
  31. Jin VL, Evans RD (2007) Elevated CO2 increases microbial carbon substrate use and nitrogen cycling in Mojave Desert soils. Glob Change Biol 13:452–465CrossRefGoogle Scholar
  32. Jin VL, Evans RD (2010) Elevated CO2 increases plant uptake of organic and inorganic N in the desert shrub Larrea tridentata. Oecologia 163:257–266. doi: 10.1007/s00442-010-1562-z CrossRefPubMedGoogle Scholar
  33. Larsen KS et al (2011) Reduced N cycling in response to elevated CO2, warming, and drought in a Danish heathland: synthesizing results of the CLIMAITE project after two years of treatments. Glob Change Biol 17:1884–1899CrossRefGoogle Scholar
  34. Le Quéré C et al (2013) The global carbon budget 1959–2011. Earth Syst Sci Data 5:165–185CrossRefGoogle Scholar
  35. LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379CrossRefPubMedGoogle Scholar
  36. Lloyd J, Bird MI, Veenendaal EM, Kruijt B (2001) Should phosphorus availability be constraining moist tropical forest responses to increasing CO2 concentrations? In: Schulze ED, Heimann M, Harrison SP, Holland EA, Lloyd J, Prentice IC, Schimel DS (eds) Global biogeochemical cycles in the climate system. Academic Press, San Diego, pp 95–114CrossRefGoogle Scholar
  37. Luo Y et al (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54:731–739CrossRefGoogle Scholar
  38. Luo Y, Hui D, Zhang D (2006) Elevated CO2 stimulates net accumulation of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87:53–63CrossRefPubMedGoogle Scholar
  39. McCarthy HR et al (2010) Re-assessment of plant carbon dynamics at the Duke free-air CO2 enrichment site: interactions of atmospheric [CO2] with nitrogen and water availability over stand development. New Phytol 185:514–528. doi: 10.1111/j.1469-8137.2009.03078.x CrossRefPubMedGoogle Scholar
  40. McGill WB, Cole CV (1981) Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26:267–286CrossRefGoogle Scholar
  41. McKinley DC, Romero JC, Hungate BA, Drake BG, Megonigal JP (2009) Does deep soil N availability sustain long-term ecosystem responses to elevated CO2? Glob Change Biol 15:2035–2048CrossRefGoogle Scholar
  42. Mikan CJ, Zak DR, Kubiske ME, Pregitzer KS (2000) Combined effects of atmospheric CO2 and N availability of the belowground carbon and nitrogen dynamics of aspen mesocosms. Oecologia 124:432–445CrossRefGoogle Scholar
  43. Müller C et al (2009) Effect of elevated CO2 on soil N dynamics in a temperate grassland soil. Soil Biol Biochem 41:1996–2001CrossRefGoogle Scholar
  44. Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48. doi: 10.1111/j.1469-8137.2008.02751.x CrossRefPubMedGoogle Scholar
  45. Newton PCD, Lieffering M, Bowatte WMSD, Brock SC, Hunt CL, Theobald PW, Ross DJ (2010) The rate of progression and stability of progressive nitrogen limitation at elevated atmospheric CO2 in a grazed grassland over 11 years of Free Air CO2 enrichment. Plant Soil 336:433–441CrossRefGoogle Scholar
  46. Niboyet A et al (2011) Testing interactive effects of global environmental changes on soil nitrogen cycling. Ecosphere 2:art56. doi: 10.1890/ES1810-00148.00141 CrossRefGoogle Scholar
  47. Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci 107:19368–19373CrossRefPubMedCentralPubMedGoogle Scholar
  48. Phillips RP, Finzi AC, Bernhardt ES (2011) Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol Lett 14:187–194CrossRefPubMedGoogle Scholar
  49. Prosser JI, Nicol GW (2012) Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol 20:523–531CrossRefPubMedGoogle Scholar
  50. Reich PB (2009) BioCON: biodiversity, elevated CO2, and N enrichment-experiment 141.
  51. Reich PB, Hobbie SE (2013) Decade-long soil nitrogen constraint on the CO2 fertilization of plant biomass nature. Clim Change 3:278–282CrossRefGoogle Scholar
  52. Reich PB et al (2006) Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440:922–925CrossRefPubMedGoogle Scholar
  53. Richter M, Hartwig UA, Frossard E, Nösberger J, Cadisch G (2003) Gross fluxes of nitrogen in grassland exposed to elevated atmospheric pCO2 for seven years. Soil Biol Biochem 35:1325–1335CrossRefGoogle Scholar
  54. Rütting T, Clough TJ, Müller C, Lieffering M, Newton PCD (2010) Ten years of elevated atmospheric CO2 alters soil N transformations in a sheep-grazed pasture. Glob Change Biol 16:2530–2542Google Scholar
  55. Rütting T, Huygens D, Staelens J, Müller C, Boeckx P (2011) Advances in 15N tracing experiments: new labelling and data analysis approaches. Biochem Soc Trans 39:279–283CrossRefPubMedGoogle Scholar
  56. Schimel J (1996) Assumptions and errors in the 15NH4 + pool dilution technique for measuring mineralization and immobilization. Soil Biol Biochem 28:827–828CrossRefGoogle Scholar
  57. Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602CrossRefGoogle Scholar
  58. Schneider MK et al (2004) Ten years of free-air CO2 enrichment altered the mobilization of N from soil in Lolium perenne L. swards. Glob Change Biol 10:1377–1388CrossRefGoogle Scholar
  59. Sinsabaugh RL, Saiya-Cork K, Long T, Osgood MP, Neher DA, Zak DR, Norby RJ (2003) Soil microbial activity in a Liquidambar plantation unresponsive to CO2-driven increases in primary production. Appl Soil Ecol 24:263–271CrossRefGoogle Scholar
  60. Sokal RR, Rohlf FJ (2012) Biometry. W. H. Freeman and Company, New YorkGoogle Scholar
  61. Talhelm AF et al (2014) Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests. Glob Change Biol 20:2492–2504CrossRefGoogle Scholar
  62. Tietema A, Wessel WW (1992) Gross nitrogen transformations in the organic layer of acid forest ecosystems subjected to increased atmospheric nitrogen input. Soil Biol Biochem 24:943–950CrossRefGoogle Scholar
  63. van Groenigen KJ, Qi X, Osenberg CW, Luo Y, Hungate BA (2014) Faster decomposition under increased atmospheric CO2 limits soil carbon storage. Science 344:508–509CrossRefPubMedGoogle Scholar
  64. Wanek W, Mooshammer M, Blöchl A, Hanreich A, Richter A (2010) Determination of gross rates of amino acid production and immobilization in decomposing leaf litter by a novel 15N isotope pool dilution technique. Soil Biol Biochem 42:1293–1302CrossRefGoogle Scholar
  65. Wang Y-P, Houlton BZ (2009) Nitrogen constraints on terrestrial carbon uptake: implications for the global carbon-climate feedback. Geophys Res Lett 36:L24403. doi: 10.21029/22009GL041009 CrossRefGoogle Scholar
  66. Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biol Rev 81:259–291CrossRefPubMedGoogle Scholar
  67. Watanabe T, Bowatte S, Newton PCD (2013) A reduced fraction of plant N derived from atmospheric N (%Ndfa) and reduced rhizobial nifH gene numbers indicate a lower capacity for nitrogen fixation in nodules of white clover exposed to long-term CO2 enrichment. Biogeosciences 10:8269–8281CrossRefGoogle Scholar
  68. West JB, Hobbie SE, Reich PB (2006) Effects of plant species diversity, atmospheric [CO2], and N addition on gross rates of inorganic N release from soil organic matter. Glob Change Biol 12:1400–1408CrossRefGoogle Scholar
  69. Williams MA, Rice CW, Owensby CE (2001) Nitrogen competition in a tallgrass prairie ecosystem exposed to elevated carbon dioxide. Soil Sci Soc Am J 65:340–346CrossRefGoogle Scholar
  70. Zaehle S, Dalmonech D (2011) Carbon–nitrogen interactions on land at global scales: current understanding in modelling climate biosphere feedbacks. Curr Opin Environ Sustain 3:311–320CrossRefGoogle Scholar
  71. Zak DR, Holmes WE, Finzi AC, Norby RJ, Schlesinger ME (2003) Soil nitrogen cycling under elevated CO2: a synthesis of forest FACE experiments. Ecol Appl 13:1508–1514CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Earth SciencesUniversity of GothenburgGothenburgSweden
  2. 2.Department of Plant EcologyJustus-Liebig-University GiessenGießenGermany

Personalised recommendations