Nutrient Cycling in Agroecosystems

, Volume 101, Issue 2, pp 167–179 | Cite as

Nutrient cycling in an agroforestry alley cropping system receiving poultry litter or nitrogen fertilizer

  • Thomas J. Sauer
  • Wayne K. Coblentz
  • Andrew L. Thomas
  • Kris R. Brye
  • David K. Brauer
  • J. Vaughn Skinner
  • J. Van Brahana
  • Sherri L. DeFauw
  • Phillip D. Hays
  • David C. Moffitt
  • James L. Robinson
  • Travis A. James
  • Kevin A. Hickie
Original Article


Optimal utilization of animal manures as a plant nutrient source should also prevent adverse impacts on water quality. The objective of this study was to evaluate long-term poultry litter and N fertilizer application on nutrient cycling following establishment of an alley cropping system with eastern black walnut (Juglans nigra L.), pecan [Carya illinoensis (Wangenh.) K. Koch], and northern red oak (Quercus rubra L.) trees and orchardgrass (Dactylis glomerata L.). One half of a 4.25-ha site in northwestern Arkansas USA received broadcast applications of 3.9–6.7 Mg ha−1 fresh poultry litter and the other half 50–76 kg ha−1 N as NH4NO3 fertilizer each spring from 2001 to 2008. Macronutrient (N, P, K, Ca, Mg, and S) and micronutrient (Na, Fe, Mn, Zn, and Cu) concentrations in soil, forage, and tree leaf tissue were monitored along with NO3-N in soil water and groundwater. Poultry litter application resulted in significantly increased concentrations of each macronutrient except S with increases from 6.3 (N) to 121 % (P). Nitrogen fertilizer application resulted in decreased concentrations from 2.1 (N) to 60.9 % (S) for all macronutrients except Ca. Patterns of nutrient content in forage and tree leaf tissue did not generally follow patterns of soil nutrient concentrations suggesting nutrient sufficiency in most years and that climate and plant growth had a greater effect on nutrient uptake. Soil P with litter application increased 41.3 mg kg−1 over 7 years (from 34.1 to 75.4), which may necessitate a lower litter application rate to avoid excessive P runoff.


Agroforestry Poultry litter Nutrient cycling Eastern black walnut Pecan Northern red oak Orchardgrass 



The authors are grateful to Paul Doi, Amy Morrow, Anna Myhre, and Kevin Jensen (National Laboratory for Agriculture and the Environment), Nancy Wolf (Univ. of Arkansas Agricultural Diagnostics Lab), Tammy Horton (Dale Bumpers Small Farms Research Center), Amanda Pirani (Univ. of Arkansas, Dept. of Crop, Soil and Environmental Sciences) and Robert Rhein, Dr. Keith Lusby, and Dr. Dirk Philipp (Univ. of Arkansas, Dept. of Animal Science) for their assistance in completion of this study. Financial support from the U.S. Forest Service and Natural Resources Conservation Service is also gratefully acknowledged.


  1. Ankumah RO, Kpomblekou AK, Ajwa HA (2002) Trace and nontrace element content of broiler litter. Commun Soil Sci Plant Anal 33(11–12):1799–1811Google Scholar
  2. Bolan NS, Szogi AA, Chuasavathi T, Seshadri B, Rothrock MJ Jr, Panneerselvam P (2010) Uses and management of poultry litter. Worlds Poult Sci J 66(4):673–698CrossRefGoogle Scholar
  3. Bransby DI, Matches AG, Krause GF (1977) Disk meter for rapid estimation of herbage yield in grazing trials. Agron J 69(3):393–396CrossRefGoogle Scholar
  4. Brauer D, Ares A, Reid W, Thomas A, Slusher JP (2006) Nut-yield variations and yield-diameter relationships in open-canopy black walnut trees in southern USA. Agrofor Syst 67(1):63–72CrossRefGoogle Scholar
  5. Burner DM (2003) Influence of alley crop environment on orchardgrass and tall fescue herbage. Agron J 95(5):1163–1171CrossRefGoogle Scholar
  6. Cabrera ML, Gordillo RM (1995) Nitrogen release from land-applied animal manures. In: Steele K (ed) Animal waste and the land-water interface. Lewis Publishers, New York, pp 393–403Google Scholar
  7. Chapman SL (1996) Soil and solid poultry waste nutrient management and water quality. Poult Sci 75(7):862–866PubMedCrossRefGoogle Scholar
  8. Cooperative Extension Service (1998) Soil test recommendations. AGR9. University of Arkansas, Fayetteville, p 120Google Scholar
  9. Dey D, Conway MR, Garrett HE, Hinckley TS, Cox GS (1987) Plant-water relationships and growth of black walnut in a walnut-forage multicropping regime. Forest Sci 33(1):70–80Google Scholar
  10. Garrett HE, Harper LS (1999) The science and practice of black walnut agroforestry in Missouri, U.S.A.: A temperate zone assessment. In: Buck LE et al (eds) Agroforestry in sustainable agricultural systems. CRC Press, Boca Raton, pp 97–110Google Scholar
  11. Garrett HE, Kerley MS, Ladyman KP, Walter WD, Godsey LD, Van Sambeek JW, Brauer DK (2004) Hardwood silvopasture management in North America. Agrofor Syst 61–62(1–3):21–33Google Scholar
  12. Gray D, Garrett HE (1999) Nitrogen fertilization and aspects of fruit yield in a Missouri black walnut alley cropping practice. Agrofor Syst 44(2–3):333–344Google Scholar
  13. Harper MD, Phillips WW, Haley GJ (1969) Soil survey of Washington County, Arkansas. USDA, Soil Conservation Service, US Gov Print Office, WashingtonGoogle Scholar
  14. Hileman LH (1973) Response of orchardgrass to broiler litter and commercial fertilizer. Report Series 207. Agricultural Experiment Station, University of Arkansas, FayettevilleGoogle Scholar
  15. Jose S, Gillespie AR, Seifert JR, Mengel DB, Pope PE (2000) Defining competition vectors in a temperate alley cropping system in the Midwestern USA 3. Competition for nitrogen and litter decomposition dynamics. Agrofor Syst 48(1):61–77CrossRefGoogle Scholar
  16. Kang BT, Reynolds L, Atta-Krah AN (1990) Alley farming. Adv Agron 43:315–359CrossRefGoogle Scholar
  17. Kurtz WB, Garrett HE (1990) Economic aspects of eastern black walnut management. Acta Hortic 284:319–325Google Scholar
  18. Marshall SB, Wood CW, Braun LC, Cabrera ML, Mullen MD, Guertal EA (1998) Ammonia volatilization from tall fescue pastures fertilized with broiler litter. J Environ Qual 27(5):1125–1129CrossRefGoogle Scholar
  19. McClain WE II, Blevins DG (2014) Poultry litter application caused low leaf calcium and magnesium, increasing the grass tetany potential of stockpiled tall fescue. Forage Grazinglands. doi: 10.1094/FG-2009-1022-01-RS Google Scholar
  20. McGinley BC, Coffey KP, Sauer TJ, Goodwin HL, Humphry JB, Coblentz WK, McBeth LJ (2004) Mineral content of forages grown on poultry litter-amended soils. Prof Anim Sci 20(2):136–145Google Scholar
  21. McMullen RL, Brye KR, Miller DM, Mason RE, Daigh AL, Menjoulet BC, Pirani AL, Gbur EE, Evans-White MA (2014) Long-term runoff water quality as affected by broiler-litter application to a Udult in the Ozark Highlands. Soil Sci Soc Am J 78(6):2017–2031CrossRefGoogle Scholar
  22. Mehlich A (1984) Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun Soil Sci Plant Anal 15(12):1409–1416CrossRefGoogle Scholar
  23. Menjoulet BC, Brye KR, Pirani AL, Haggard BE, Gbur EE (2009) Runoff water quality from broiler litter-amended tall fescue in response to natural precipitation in the Ozark Highlands. J Environ Qual 38(3):1005–1017PubMedCrossRefGoogle Scholar
  24. National Research Council (1996) Nutrient requirements of beef cattle, 7th edn. National Academy Press, WashingtonGoogle Scholar
  25. Netthisinghe AMP, Gilfillen B, Willian TW, Rowland NS, Sistani KR (2011) Inorganic fertilizers after broiler litter amendment reduce surplus nutrients in orchardgrass soils. Agron J 103(2):536–543CrossRefGoogle Scholar
  26. Netthisinghe AMP, Woosley PB, Gilfillen B, Cook KL, Sistani KR (2014) Nutrient-source and tillage impacts on tall fescue production and soil properties. Agron J 106(4):1427–1437CrossRefGoogle Scholar
  27. Peterson EW, Davis RK, Brahana J, Orndorff HA (2002) Movement of nitrate through regolith covered karst terrane, northwest Arkansas. J Hydrol 256(1–2):35–47CrossRefGoogle Scholar
  28. Ponder F Jr (1985) Soil-water variations and black walnut growth. N Nut Growers Assoc Ann Rept 76:149–154Google Scholar
  29. Ponder F Jr, Jones JE (2001) Annual applications of N, P, and K interrupt alternate-year nut crops in black walnut. J Plant Nutr 24(4–5):661–670CrossRefGoogle Scholar
  30. Ponder F Jr, Jones JE, Haines J (1998) Annual applications of N, P, and K for four years moderately increase nut production in black walnut. HortScience 33(6):1011–1013Google Scholar
  31. Sainju UM, Senwo ZN, Nyakatawa EZ, Tazisong IA, Reddy KC (2010) Poultry litter application increases nitrogen cycling compared with inorganic nitrogen fertilization. Agron J 102(3):917–925CrossRefGoogle Scholar
  32. Sandal PC, Staten RD, Davis AM (1953) Pasture experiments in north Arkansas 1946–1952. Bulletin 537. Agricultural Experiment Station, University of Arkansas, FayettevilleGoogle Scholar
  33. Sauer TJ, Daniel TC, Moore PA Jr, Coffey KP, Nichols DJ, West CP (1999) Poultry litter and grazing animal waste effects on runoff water quality. J Environ Qual 28(3):860–865CrossRefGoogle Scholar
  34. Sauer TJ, Daniel TC, Nichols DJ, West CP, Moore PA Jr, Wheeler GL (2000) Runoff water quality from poultry litter-treated pasture and forest sites. J Environ Qual 29(2):515–521CrossRefGoogle Scholar
  35. Slaton NA, Brye KR, Daniels MB, Daniel TC, Norman RJ, Miller DM (2004) Nutrient input and removal trends for agricultural soils in nine geographic regions of Arkansas. J Environ Qual 33(5):1606–1615PubMedCrossRefGoogle Scholar
  36. Steel RGD, Torrie JH (1980) Principles and procedures of statistics. McGraw-Hill Book Co, New York  Google Scholar
  37. Stephenson AH, McCaskey TA, Ruffin BG (1990) A survey of broiler litter composition and potential value as a nutrient resource. Biol Wastes 34(1):1–9CrossRefGoogle Scholar
  38. Tewolde H, Adeli A, Sistani KR, Rowe DE (2011) Mineral nutrition of cotton fertilized with poultry litter or ammonium nitrate. Agron J 103(6):1704–1711CrossRefGoogle Scholar
  39. Thomas AL, Brauer DK, Sauer TJ, Coggeshall MV, Ellersieck MR (2008) Cultivar influences rootstock and scion survival of grafted black walnut. J Am Pomol Soc 62(1):3–12Google Scholar
  40. Van Es HM, Sogbedji JM, Schindelbeck RR (2006) Effect of manure application timing, crop, and soil type on nitrate leaching. J Environ Qual 35(2):670–679PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2014

Authors and Affiliations

  • Thomas J. Sauer
    • 1
  • Wayne K. Coblentz
    • 2
  • Andrew L. Thomas
    • 3
  • Kris R. Brye
    • 4
  • David K. Brauer
    • 5
  • J. Vaughn Skinner
    • 6
  • J. Van Brahana
    • 7
  • Sherri L. DeFauw
    • 8
  • Phillip D. Hays
    • 9
  • David C. Moffitt
    • 10
  • James L. Robinson
    • 11
  • Travis A. James
    • 12
  • Kevin A. Hickie
    • 13
  1. 1.National Laboratory for Agriculture and the EnvironmentUSDA-ARSAmesUSA
  2. 2.U.S. Dairy Forage Research CenterUSDA-ARSMarshfieldUSA
  3. 3.Southwest Research CenterUniversity of Missouri-ColumbiaMt. VernonUSA
  4. 4.Department of Crop, Soil and Environmental ScienceUniversity of ArkansasFayettevilleUSA
  5. 5.Conservation and Production Research LaboratoryUSDA-ARSBushlandUSA
  6. 6.Agricultural Experiment StationUniversity of ArkansasFayettevilleUSA
  7. 7.Department of GeosciencesUniversity of ArkansasFayettevilleUSA
  8. 8.Department of Agricultural Economics, Sociology and EducationPennsylvania State UniversityUniversity ParkUSA
  9. 9.U.S. Geological SurveyFayettevilleUSA
  10. 10.Texas A&M AgriLife Research and Extension CenterTempleUSA
  11. 11.USDA-NRCSFort WorthUSA
  12. 12.USDA-NRCSSalt Lake CityUSA
  13. 13.Arkansas Forestry CommissionFayettevilleUSA

Personalised recommendations