Nutrient Cycling in Agroecosystems

, Volume 84, Issue 2, pp 155–166 | Cite as

Decomposition and phosphorus release of agroforestry shrub residues and the effect on maize yield in acidic soils of Rubona, southern Rwanda

  • A. Mukuralinda
  • J. S. Tenywa
  • L. Verchot
  • J. Obua
  • S. Namirembe
Research Article


Phosphorus release from decomposing leaf biomass of Calliandra calothyrsus Meissner, Tithonia diversifolia Hensley A.Gray and Tephrosia vogelii Hook.f. agroforestry species applied alone or combined with triple super phosphate (TSP) was studied at World Agroforestry Centre (ICRAF) laboratory for 56 days using an incubation method. The effects of above treatments on maize yield were evaluated in the field at Rubona, southern province of Rwanda between the years 2001 and 2004. The net cumulative phosphorus (P) mineralised ranged from 16.2 to 212.2 mg P kg−1. The net P mineralisation rates from green manure, TSP applied alone or combined with green manure decreased in the order green manure > green manure + TSP > TSP > lime > control. The best plant residues quality for predicting P mineralisation is total P, C, and C:P & C:N ratios. Relative to the control, leaf biomass combined with TSP resulted in six times higher maize grain yield at the end of the experiment i.e., from 0.9 to 7.1 t ha−1. In the fourth season, application of Tithonia diversifolia Hensley A.Gray green manure combined with TSP at 50 kg P ha−1 resulted in higher maize yield (25% increase) than TSP and Tithonia diversifolia Hensley A.Gray (9% increase) applied alone at the similar rate. Therefore, application of plant residues and TSP alone might not be sufficient to meet maize plant P requirements and to achieve the yield potential of maize in the Rubona soils unless supplemented with mineral fertilisers.


Biomass transfer Phosphorus mineralisation Plant residue quality Rubona 


  1. Alexander M (1997) Introduction to soil microbiology. Wiley, New York, pp 31–37Google Scholar
  2. Anderson JM, Ingram JSI (1993) A handbook on methods of soil analysis, 2nd edn. Tropical Soil Biology and Fertility, CABI Wallingford UK, p 140Google Scholar
  3. Baijukya FP, de Steenhuijsen Piters B (1998) Nutrient balances and their consequences in the based land use systems of Bukoba district, Northwest Tanzania. Agric Ecosyst Environ 71:147–158. doi: 10.1016/S0167-8809(98)00137-6 CrossRefGoogle Scholar
  4. Constantinides M, Fownes JH (1994) Tissue-to-solvent ratio and other factors affecting determination of soluble phenolics in tropical leaves. Commun Soil Sci Plant Anal 25:3221–3227. doi: 10.1080/00103629409369260 CrossRefGoogle Scholar
  5. Dalal RC (1979) Mineralisation of carbon and phosphorus from carbon-14 and phosphorus-32 labelled plant materials added to soil. Soil Sci Soc Am J 43:913–916Google Scholar
  6. Fox RH, Myers RJK, Vallis I (1990) The nitrogen mineralisation rate of legume residues in soil as influenced by their polyphenol, lignin and nitrogen contents. Plant Soil 129:251–259Google Scholar
  7. Frankenberger WT, Abdelmagid HM (1985) Kinetic parameters of nitrogen mineralisation rates of leguminous crops incorporated into soil. Plant Soil 87:257–271. doi: 10.1007/BF02181865 CrossRefGoogle Scholar
  8. GenStat (2006) GenStat for windows, 9th edn. VSN International, Oxford, UKGoogle Scholar
  9. Giller KE, Cadish G, Ehaliotis C, Adams E, Sakala WD, Mafongoya PL (1997) Building soil nitrogen capital in Africa. In: Buresh RJ, Sanchez PA, Calhoum F (eds) Replenishing soil fertility in Africa. SSSA Special Publication No 51, Madison, WI, pp 151–1992Google Scholar
  10. Handayanto E, Cadisch G, Giller KE (1994) Nitrogen release from prunings of legume hedgerow trees in relation to quality of the prunings and incubation method. Plant Soil 160(2):237–248. doi: 10.1007/BF00010149 CrossRefGoogle Scholar
  11. Henao J, Baanante CA (1999) Estimating rates of nutrients depletion in soils of agricultural lands of Africa. Int Cent Soil Fertil Agric Dev 31(1). IFDCGoogle Scholar
  12. Iyamuremye F, Dick RP (1996) Organic amendments and phosphorus sorption by soils. Adv Agron 56:139–185. doi: 10.1016/S0065-2113(08)60181-9 CrossRefGoogle Scholar
  13. Iyamuremye F, Dick RP, Baham J (1996) Organic amendments and phosphorus dynamics: I phosphorus chemistry and sorption. Soil Sci 161:426–435. doi: 10.1097/00010694-199607000-00002 CrossRefGoogle Scholar
  14. Jama BA, Palm CA, Buresh RJ, Niang AI, Gachengo C, Nziguheba G, Amadalo B (2000) Tithonia diversifolia as a green manure for soil fertility improvement in western Kenya: a review. Agrofor Syst 49:201–221. doi: 10.1023/A:1006339025728 CrossRefGoogle Scholar
  15. Kwabiah AB, Stoskopf NC, Palm CA, Voroney RP, Rao MR, Gacheru E (2003) Phosphorus availability and maize response to organic and inorganic fertilizer inputs in a short term study in western Kenya. Agric Ecosyst Environ 95:49–59. doi: 10.1016/S0167-8809(02)00167-6 CrossRefGoogle Scholar
  16. Mafongoya PL, Giller KE, Palm CA (1998) Decomposition and nitrogen release patterns of tree prunings and litter. Agrofor Syst 38(1–3):77–97Google Scholar
  17. Mafongoya PL, Barak P, Reed JD (2000) Carbon, nitrogen and phosphorus mineralization from tree leaves and manure. Biol Fertil Soils 30(4):298–305. doi: 10.1007/s003740050007 CrossRefGoogle Scholar
  18. Mokwunye AU, Chien SH, Rhodes E (1986) Phosphorus reaction with tropical African soils. In: Mokwunye AU, Vlek PLG (eds) Management of nitrogen and phosphorus fertilisers in Sub-Saharan Africa. Martinus Nijhoff Publishers, Dordrecht, pp 253–281Google Scholar
  19. Mtambanengwe F, Kirchman H (1995) Litter from tropical savanna woodland (miombo) chemical composition C and N mineralisation. Soil Biol Biochem 27:1639–1651. doi: 10.1016/0038-0717(95)00073-N CrossRefGoogle Scholar
  20. Murphy J, Riley JP (1962) A modified single solution for determination of phosphate in natural waters. Anal Chim Acta 27:31–36. doi: 10.1016/S0003-2670(00)88444-5 CrossRefGoogle Scholar
  21. Nabahungu LN (2003) Effects of limestone, Minjingu phosphate rock and green manure application on improvement of acid soils in Tonga, Butare, Rwanda. MSc thesis, Sokoine University of Agriculture, p 122Google Scholar
  22. Nelson DW, Sommers LE (1982) Total carbon, organic carbon and organic matter. In: Page AL, Miller RH, Keeney DR (eds) Method of soil analysis 2. America Society of Agriculture, Madison, USA, pp 539–579Google Scholar
  23. Niang AI, Gathumbi SM, Amadalo B (1996) The potential of improved fallow for crop productivity enhancement in the highlands of western Kenya. East Afr Agric Forum J 62:103–124Google Scholar
  24. Nziguheba G (2001) Improving phosphorus availability and maize production through organic and inorganic amendments in phosphorus deficient soils in western Kenya. Dissertation, PhD Thesis of the Leuven Catholic University, Belgium, p 110Google Scholar
  25. Olsen SR, Cole CU, Wanatabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S.D.A, USA, p 19Google Scholar
  26. Palm CA, Rowland A (1997) Chemical characterization of plant quality for decomposition. In: Cadish G, Giller KE (eds) Driven by nature: plant litter quality and decomposition. CAB International, Wallingford, pp 379–392Google Scholar
  27. Palm CA, Myers RJK, Nandwa SM (1997) Combined use of organic and inorganic nutrient sources for soil fertility maintenance and replenishment In: Buresh RJ, Sanchez PA, Calhoum F (eds) Replenishment soil fertility in Africa. Soil Science Society of America, vol 51. Madison, WI, USA, pp 193–217Google Scholar
  28. Palm CA, Gachengo CN, Dalve RJM, Cadish G, Giller KE (2001) Organic inputs for soil fertility management in tropical agro-ecosystems: application of an organic resources database. Agric Ecosyst Environ 83:27–42. doi: 10.1016/S0167-8809(00)00267-X CrossRefGoogle Scholar
  29. Parkinson JA, Allen SE (1975) A wet oxidation procedure suitable for the determination of nitrogen mineral nutrients in biological materials. Commun Soil Sci Plant Anal 6:1–11. doi: 10.1080/00103627509366539 CrossRefGoogle Scholar
  30. Saggar S, Parfitt RL, Salt G, Skinner MF (1998) Carbon and phosphorus transformations during the decomposition of pine forest floor with different phosphorus status. Biol Fertil soil 27:197–203CrossRefGoogle Scholar
  31. Sanchez PA (2002) Soil fertility and hunger in Africa. Science 295:2019–2020. doi: 10.1126/science.1065256 PubMedCrossRefGoogle Scholar
  32. Sandhu JM, Simha M, Ambasht RS (1990) Nitrogen release from decomposing litter of Leucaena leucocephala in the dry tropics. Soil Biol Biochem 7:171–177Google Scholar
  33. Sharpley AN, Smith SJ (1989) Mineralisation and leaching of phosphorus from soil incubated with surface-applied and incorporated crop residues. J Environ Qual 18:101–105CrossRefGoogle Scholar
  34. Shepherd KD, Vanlauwe B, Gachengo CN, Palm CA (2005) Decomposition and mineralisation of organic residues predicted using near infrared spectroscopy. Plant Soil 277:315–333. doi: 10.1007/s11104-005-7929-y CrossRefGoogle Scholar
  35. Sibbesen E (1978) An investigation of the anion exchange method for soil phosphate extraction. Plant Soil 50:305–321. doi: 10.1007/BF02107180 CrossRefGoogle Scholar
  36. Soil Survey Staff (1994) Keys to soil taxonomy, vol 6. Soil conservation service, United States Department of Agriculture, Government Printer office, Washington, DC, USAGoogle Scholar
  37. TAPPI (1988) Water solubility of wood and pulp, T 207 OM-88. Technical Association of the Pulp and Paper Industry Atlanta, GA, USAGoogle Scholar
  38. Tian G, Kang BT, Brussaard L (1992) Effects of chemical composition on N, Ca, and Mg release during incubation of leaves from selected agroforestry and fallow plant species. Biochemistry 16:103–119Google Scholar
  39. Van Soest PJ (1963) Use of detergents in analysis of fibrous feeds II. A rapid method for the determination of fiber and lignin. Assoc Off Agric Chem J 46:829–835.Google Scholar
  40. Warren G (1992) Fertiliser phosphorus sorption and residual value in tropical African soils. NRI Bulletin 37: Natural Resource Institute, Chatham, EnglandGoogle Scholar
  41. Wright AF, Bailey JS (2001) Organic carbon, total carbon, and total nitrogen determinations in soils of variables calcium carbonate contents using a LECOCN-2000 dry combustion analyser. Commun Soil Sci Plant Anal 32(19&20):3243–3258Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • A. Mukuralinda
    • 1
  • J. S. Tenywa
    • 2
  • L. Verchot
    • 3
  • J. Obua
    • 2
  • S. Namirembe
    • 4
  1. 1.Institut des Sciences Agronomiques du Rwanda (ISAR)ButareRwanda
  2. 2.Makerere UniversityKampalaUganda
  3. 3.World Agroforestry Centre (ICRAF)NairobiKenya
  4. 4.EMPAFORM, Budongo Community Development Organization (BUCODO)KampalaUganda

Personalised recommendations