Skip to main content

Advertisement

Log in

Total and organic soil carbon in cropping systems of Nepal

  • Original Paper
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

The significance of soil organic matter (SOM) in sustaining agriculture has long been recognized. The rate of change depends on climate, cropping system, cropping practice, and soil moisture. A 3-yr on-farm study was conducted in two major agro-ecologies (hills with warm-temperate climate and plains with subtropical climate) of Nepal. The soils in warm-temperate climate are Lithic subgroups of Ustorthents with well-drained loamy texture, and in subtropical climate are Haplaquepts with imperfectly drained loamy texture. Farmers’ predominant cropping systems were selected from different cultivation length in addition to a reference sample collected from adjacent virgin forest. The objectives were to examine the effect of cultivation length and cropping system on total carbon, KMnO4-oxidizable soil C, C storage, and C/N ratio in two climatic scenarios: warm-temperate and subtropical. A large difference in KMnO4-oxidizable soil organic C was observed due to the effect of cultivation length and cropping system. However, TC remained similar during the 3-year study. The decrease in KMnO4-oxidizable C due to cultivation was more in the surface layer (43–56%) than in the subsurface layer (20–30%). Total C in uncultivated, < 10-year cultivated, and > 50-year cultivated soil was 22, 13, and 10 g kg−1 in warm-temperate climate and 10, 6, and 5 g kg−1 in subtropical climate, respectively. During the 3-year study period in both climates, large changes in soil C were observed for KMnO4-oxidizable C but not for TC, confirming our earlier work on the usefulness of the KMnO4 oxidized fraction for detecting a relatively short-term increase or decrease in soil C pool. The TC storage in uncultivated, < 10-year cultivated, and > 50-year cultivated soil was 38, 25, and 19 Mg ha−1 in warm-temperate climate and 22, 15, and 12 Mg ha−1 in subtropical climate, respectively. The rice–wheat and maize–potato cropping systems were good in storing soil C of 30 and 20 Mg ha−1 for 0–15-cm soil depth in warm-temperate climate. The rice–wheat cropping system was also good in storing soil C in subtropical climate (19 Mg ha−1) compared with other cropping systems studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blair GJ, Lefroy RDB, Lisle L (1995) Soil carbon fractions based on their degree of oxidation and the development of a carbon management index for agricultural systems. Aust J Agric Res 46:1459–1466

    Article  Google Scholar 

  • Bouyoucos GJ (1951) A recalibration of the hydrometer method for making mechanical analysis of soil. Agron J 43:434–438

    Article  CAS  Google Scholar 

  • Brye KR, Gbur EE, Miller DM (2004) Relationships among soil carbon and physiochemical properties of a Typic Albaqualf as affected by years under cultivation. Commun Soil Sci Plant Anal 35:177–192

    Article  CAS  Google Scholar 

  • Carter MR, Gregorich EG, Angers DA, Donald RG, Bolinder MA (1998) Organic C and N storage, and organic C fractions in adjacent cultivated and forested soils of eastern Canada. Soil Till Res 47:253–261

    Article  Google Scholar 

  • Compton JE, Boone RD (2000) Long-term impacts of agriculture on soil carbon and nitrogen in New England forests. Ecology 81:2314–2330

    Article  Google Scholar 

  • Conteh A, Blair GJ, Lefroy RDB, Macleod DA (1997) Soil organic carbon changes in cracking clay soils under cotton production as studied by carbon fractionation. Aust J Agric Res 48:1049–1058

    Article  CAS  Google Scholar 

  • Gami S, Ladha J, Pathak H, Shah M, Pasuquin E, Pandey S, Hobbs P, Joshy D, Mishra R (2001) Long-term changes in yield and soil fertility in a twenty-year rice-wheat experiment in Nepal. Biol Fertil Soils 34:73–78

    Article  CAS  Google Scholar 

  • Hao X, Chang C, Lindwall CW (2001) Tillage and crop sequence effects on organic carbon and total nitrogen content in an irrigated Alberta soil. Soil Till Res 62:167–169

    Article  Google Scholar 

  • Havlin JE, Kissel DE, Maddux LD, Claassen JM, Long JH (1990) Crop rotations and tillage effects on soil organic carbon and nitrogen. Soil Sci Soc Am J 54:449–452

    Article  Google Scholar 

  • Houghton RA, Hackler JL (2000) Changes in terrestrial carbon storage in the United States. 1: the roles of agriculture and forestry. Global Ecol Biogeo 9:125–144

    Article  Google Scholar 

  • IRRI (International Rice Research Insitute). (1998) IRRISTAT for Windows [Online]. Version 4.0. International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines http://www.cgiar.org/irri/irristat.htm

  • Jimenez RR, Ladha JK (1993) Automated elemental analysis: a rapid and reliable but expensive measurement of total carbon and N in plant and soil samples. Commun Soil Sci Plant Anal 24:1897–1924

    Article  CAS  Google Scholar 

  • Ladha JK, Dawe D, Pathak H, Padre AT, Yadav RL, Singh B, Singh Y, Singh P, Kundu AL, Sakal R, Ram N, Regmi AP, Gami SK, Bhandari AL, Amin R, Yadav CR, Bhattarai EM, Das S, Aggrawal HP, Gupta RK, Hobbs PR (2003) How extensive are yield declines in long-term rice-wheat experiments in Asia? Field Crops Res 81:159–180

    Article  Google Scholar 

  • Lal R, Kimble J, Follett R (1998) Knowledge gaps and research priorities. In: Lal R et al (eds) Soil processes and the carbon cycle. Adv. Soil Sci. CRC Press, Boca Raton FL, pp 595–604

  • Lefroy RDB, Blair GJ, Strong WM (1993) Changes in soil organic-matter with cropping as measured by organic-carbon fractions and C-13 natural isotope abundance. Plant Soil 156:399–402

    Article  Google Scholar 

  • Maskey SL, Shrestha RK, Shrestha B, Tripathi BP, Bhattarai EM, Munankarmy RC, Khadka YG (2002) Strategies for soil fertility research in the hills of Nepal. Soil Science Division, Nepal Agric. Research Council, Nepal/Hill Agriculture Research Project, DFID, Nepal

  • Mikhailova EA, Bryant RB, Vassenev II, Schwager SJ, Post CJ (2000) Cultivation effects on soil carbon and nitrogen contents at depth in the Russian chernozem. Soil Sci Soc Am J 64:738–745

    Article  CAS  Google Scholar 

  • MOA (Ministry of Agriculture) (1999) Statistical Information on Nepalese Agriculture – 1998/99. Ministry of Agriculture, Agricultural Statistics Division, Nepal

    Google Scholar 

  • Osher LJ, Matson PA, Amundson R (2003) Effect of land use changes on soil carbon in Hawaii. Biogeochemistry 65:213–232

    Article  CAS  Google Scholar 

  • Padre A, Ladha JK (2004) Assessing the reliability of permanganate-oxidizable carbon as an index of soil labile carbon. Soil Sci Soc Am J 68:969–978

    Article  Google Scholar 

  • Paul EA, Morris SJ, Bohm S (2001) The determination of soil C pool sizes and turnover rates: biophysical fractionation and tracers. In: Lal R et al. (eds) Assessment methods for soil carbon. CRC Press, Boca Raton, Florida, USA, pp 193–206

    Google Scholar 

  • PCARRD (Philippine Council for Agriculture, Forestry and Natural Resources Research and Development). (1980) Standard methods of analysis for soil, plant tissue, water and fertilizer. Farm Resources and Systems Research Division, Philippine council for Agriculture and Research, Los Baños, Laguna, Philippines

  • Ramesh K, Chandrasekaran B (2004) Soil organic carbon build-up and dynamics in rice-rice cropping systems. J Agron Crop Sci 190:21–27

    Article  Google Scholar 

  • Regmi AP, Ladha JK, Pathak H, Pasuquin E, Bueno C, Dawe D, Hobbs PR, Joshy D, Maskey SL, Pandey SP (2002) Yield and soil fertility trends in a 20-year rice–rice–wheat experiment in Nepal. Soil Sci Soc Am J 66:857–867

    Article  CAS  Google Scholar 

  • Sa JCM, Cerri CC, Dick WA, Lal R, Filho SPV, Piccolo MC, Feigl BE (2001) Organic matter dynamics and carbon sequestration rates for a tillage chronosequence in a Brazilian Oxisol. Soil Sci Soc Am J 65:1486–1499

    Article  CAS  Google Scholar 

  • Schlesinger WH (1986) Changes in soil carbon storage and associated properties with disturbance and recovery. In: Trabalka JR and Reichle DE (eds) The change in pedogenic carbonates. Lewis Publishers, Boca Raton, FL, pp 194–220

    Google Scholar 

  • Selvaraju R (1994) Pre-season fallow management and current-season land configuration techniques on rabi intercropping systems of rainfed Vertisoil. Ph.D. thesis submitted to Tamil Nadu Agric. Univ., Coimbatore, India

  • Shrestha S (1992) Crisis area study. Mountain Farming System, International Center for Integrated Mountain Development, Nepal. Discussion Paper No. 32

  • Shrestha RK, Ladha JK, Lefroy RDB (2002) Carbon management for the sustainability of an intensive rice-based cropping system. Biol Fertil Soils 36:215–223

    Article  CAS  Google Scholar 

  • Solomon D, Fritzsche F, Lehmann M, Zech W (2002) Soil organic matter composition in the subhumid Ethiopian highlands as influenced by deforestation and agricultural management. Soil Sci Soc Am J 66:68–82

    Article  CAS  Google Scholar 

  • Soulides DA, Allison FE (1961) Effect of drying and freezing soil on CO2 production, available mineral nutrients, aggregation and bacterial population. Soil Sci 91:291–298

    CAS  Google Scholar 

  • Subbian P, Lal R, Subramanian KS (2000) Cropping systems effects on soil quality in semi-arid tropics. J Sustainable Agric 16:7–39

    Article  Google Scholar 

  • Upadhyay TO, Sankhayan PL, Solberg B (2005) A review of carbon sequestration dynamics in the Himalayan region as a function of land-use change and forest/soil degradation with special reference to Nepal. Agric Ecosyst Environ 105:449–465

    Article  CAS  Google Scholar 

  • Uren N (1991) The management of soil organic matter for sustainable agriculture. Agric-Sci 4:45–48

    Google Scholar 

  • Watts CW, Dexter AR (1998) Soil friability: theory, measurement and the effects of management on organic carbon content. Eur J Soil Sci 49:73–84

    Article  Google Scholar 

  • Zhu Z, Liu C, Jiang B (1984) Mineralization of organic nitrogen, phosphorus, and sulfer in some paddy soils of China. In: Organic matter and rice. International Rice Research Institute, Los Baños (Philippines), pp 259–272

Download references

Acknowledgments

This study was funded by the Rice–Wheat Consortium for the Indo-Gangetic Plain. The authors would like to thank S.L. Maskey, chief soil scientist, Soil Science Division, Nepal Agricultural Research Council, Lalitpur, Nepal; P. Hobbs, Cornell University, USA; and R.K. Gupta, Rice-Wheat coordinator, New Delhi, India, for their suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Shrestha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shrestha, R., Ladha, J. & Gami, S. Total and organic soil carbon in cropping systems of Nepal. Nutr Cycl Agroecosyst 75, 257–269 (2006). https://doi.org/10.1007/s10705-006-9032-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-006-9032-z

Keywords

Navigation