Advertisement

Nutrient Cycling in Agroecosystems

, Volume 74, Issue 2, pp 175–189 | Cite as

Increase of N2O Fluxes in Agricultural Peat and Sandy Soil under Elevated CO2 Concentration: Concomitant Changes in Soil Moisture, Groundwater Table and Biomass Production of Phleum pratense

  • Riitta Kettunen
  • Sanna Saarnio
  • Pertti J. Martikainen
  • Jouko Silvola
Article

Abstract

The effects of elevated atmospheric CO2 concentration on soil moisture, N2O fluxes, and biomass production of Phleum pratense were studied in the laboratory. Farmed peat and sandy soil mesocosms sown with P. pratense were fertilized with a commercial fertilizer. In peat soil 10 g N m−2 of commercial fertilizer were added and in sandy soil 15 g N m−2. In both experiments, soil moisture was regulated with deionized water; 18 mesocosms were tended to keep equally moist, and the other 18 were watered with equal amounts of water. Nine mesocosms from both watering treatments were grown under ambient (360 μmol mol−1) CO2 concentration and the remaining nine under doubled (720 μmol mol−1) CO2. N2O efflux was monitored using a closed chamber technique and a gas chromatograph. The elevated supply of CO2 increased production of above- and belowground biomass, soil moisture and N2O fluxes, but decreased the total N content in the aboveground biomass, especially for the sandy soil. In similar water levels, N2O efflux from the sandy soil was the same magnitude as that from the peat soil. In addition to moisture, N availability was the main limiting factor for N2O production, but C availability also seemed to regulate the denitrification activity. In addition to an increase in C availability the increase in the N2O efflux under the raised CO2 concentration also required a simultaneous increase in soil moisture.

Keywords

Atmospheric CO2 concentration Carbon Nitrogen Root production Water use efficiency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbasi, M.K., Adams, W.A. 2000Gaseous N emissions during simultaneous nitrification–denitrification associated with mineral N fertilization to a grassland soil under field conditionsSoil Biol. Biochem.3212511259CrossRefGoogle Scholar
  2. Arnone, J.A., Bohlen, P.J. 1998Stimulated N2O flux from intact grassland monoliths after two growing seasons under elevated atmospheric CO2 Oecologia116331335CrossRefGoogle Scholar
  3. Baggs, E.M., Richter, M., Cadisch, G., Hartwig, U.A. 2003aDenitrification in grass swards is increased under elevated atmospheric CO2 Soil Biol. Biochem.35729732CrossRefGoogle Scholar
  4. Baggs, E.M., Richter, M., Hartwig, U.A., Cadisch, G. 2003bNitrous oxide emissions from grass swards during the eighth year of elevated atmospheric pCO2 (Swiss FACE). GlobChange Biol.912141222CrossRefGoogle Scholar
  5. Baggs, E.M., Blum, H. 2004CH4 oxidation and emissions of CH4N2O from Lolium perenne swards under elevated atmospheric CO2 Soil Biol. Biochem.36713723CrossRefGoogle Scholar
  6. BassiriRad, H., Gutschick, V.P., Lussenhop, J. 2001Root system adjustments: regulation of plant nutrient uptake and growth responses to elevated CO2 Oecologia126305320CrossRefGoogle Scholar
  7. Cardon, Z.G., Hungate, B.A., Cambardella, C.A., Chapin, F.S.,III, Field, C.B., Holland, E.A., Mooney, H.A. 2001Contrasting effects of elevated CO2 on old and new soil carbon poolsSoil Biol. Biochem.33365373CrossRefGoogle Scholar
  8. Cheng, W., Johnson, D.W. 1998Elevated CO2rhizosphere processes, and soil organic matter decompositionPlant Soil202167174CrossRefGoogle Scholar
  9. Cotrufo, F.M., Ineson, P., Scott, A. 1998Elevated CO2 reduces the nitrogen concentration of plant tissuesGlob. Change Biol.44354CrossRefGoogle Scholar
  10. Davey, P.A., Parsosns, A.J., Atkinson, L., Wadge, K., Long, S.P. 1999Does photosynthetic acclimation to elevated CO2 increase photosynthetic nitrogen-use efficiency?. A study of three native UK grassland species in open-tip chambersFunct. Ecol.132128CrossRefGoogle Scholar
  11. Davidson, E.A. 1991Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystemsRogers, J.E.Whitman, W.B. eds. Microbial Production and Consumption of Greenhouse Gases: MethaneNitrogen Oxides, and HalomethanesAmerican Society for MicrobiologyWashington DC189199Google Scholar
  12. Duxbury, J.M., Bouldin, D.R., Terry, R.E., Tate, R.L.,III 1982Emissions of nitrous oxide from soilsNature298462464CrossRefGoogle Scholar
  13. Diaz, S., Grime, J.P., Harris, J., McPherson, E. 1993Evidence of a feedback mechanism limiting plant response to elevated carbon dioxideNature364616617CrossRefGoogle Scholar
  14. Drake, B.G., Gonzalez-Meler, M.A., Long, S.P. 1997More efficient plants: a consequence of rising atmospheric CO2?Annu. Rev. Plant Phys.48609639CrossRefGoogle Scholar
  15. Ellsworth, D.S., Reich, P.B., Naumburg, E.S., Koch, G.W., Kubiske, M.K., Smith, S.D. 2004Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forestgrassland and desertGlob. Change Biol.1021212138CrossRefGoogle Scholar
  16. Firestone, M.K., Firestone, R.B., Tiedje, J.M. 1980Nitrous oxide from soil denitrification: factors controlling its biological productionScience208749751Google Scholar
  17. Firestone, M.K., Davidson, E.A. 1989Microbiological basis of NO and N2O production and consumption in soilAndreae, M.O.Schimel, D.S. eds. Exchange of Trace Gases Between Terrestrial Ecosystems and the AtmosphereJohn Wiley & SonsChichester721Google Scholar
  18. Fitter, A. 1997Nutrient AcquisitionCrawley, M.J. eds. Plant EcologyBlackwll Science Ltd.Oxford5172Google Scholar
  19. Gloser, V., Ježiková, M., Lüscher, A., Frehner, M., Blum, H., Nösberger, J., Hartwig, U.A. 2000Soil mineral nitrogen availability was unaffected by elevated atmospheric pCO2 in a four year old field experiment (Swiss FACE)Plant Soil227291299CrossRefGoogle Scholar
  20. Groffman, P.M. 1991Ecology of nitrification and denitrification in soil evaluated at scales relevant to atmospheric chemistryRogers, J.E.Whitman, W.B. eds. Microbial Production and Consumption of Greenhouse Gases: MethaneNitrogen Oxides, and HalomethanesAmerican Society for MicrobiologyWashington DC201217Google Scholar
  21. Hartwig, U.A., Lüscher, A., Daepp, M., Blum, H., Soussana, J.F., Nösbeger, J. 2000Due to symbiotic N2 fixation, five years of elevated atmospheric pCO2 had no effect on the N concentration of plant litter in fertilemixed grasslandPlant Soil2244350CrossRefGoogle Scholar
  22. Hebeisen, T., Lüscher, A., Zanetti, S., Fisher, B.U., Hartwig, U.A., Frehner, M., Hendrey, G.R., Blum, H., Nösbeger, J. 1997Growth response of Trifolium repens L. and Lolium perenne L. as monocultures and bi-species mixture to free air CO2 enrichment and managementGlob. Change Biol.3149160CrossRefGoogle Scholar
  23. Houghton, J.Ding, Y.Griggs, D.J.Nouger, M.Linden, P.J.Dai, X.Makell, K.Johnson, C.A. eds. 2001Climate Change 2001. The Scientific BasisContribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel of Climate ChangeCambridgeGoogle Scholar
  24. Hu, S., Chapin, F.S.,III, Firestone, M.K., Field, C.B., Chiariello, N.R. 2001Nitrogen limitation of microbial decomposition in a grassland under elevated CO2 Nature409188190CrossRefGoogle Scholar
  25. Hungate, B.A., Holland, E.A., Jackson, R.B., Chapin, F.S.,III, Mooney, H.A., Field, C.B. 1997aThe fate of carbon in grasslands under carbon dioxide enrichmentNature388576579CrossRefGoogle Scholar
  26. Hungate, B.A., Chapin, F.S.,III, Zhong, H., Holland, E.A., Field, C.B. 1997bStimulation of grassland nitrogen cycling under carbon dioxide enrichmentOecologia109149153CrossRefGoogle Scholar
  27. Höglind, M., Hanslin, H.M., Oijen, M. 2005Timothy regrowthtillering and leaf area dynamics following spring harvest at two growth stagesField Crop Res.935163Google Scholar
  28. Ineson, P., Coward, P.A., Hartwig, U.A. 1998Soil gas fluxes of N2O, CH4 and CO2 beneath Lolium perenne under elevated CO2: the Swiss free air carbon dioxide enrichment experimentPlant Soil1988995CrossRefGoogle Scholar
  29. Jackson, R.B., Sala, O.E., Field, C.B., Mooney, H.A. 1994CO2 alters water usecarbon gain, and yield for the dominant species in a natural grasslandOecologia98257262CrossRefGoogle Scholar
  30. Jackson, R.B., Reynolds, H.L. 1996Nitrate and ammonium uptake for single- and mixed species communities grown at elevated CO2 Oecologia1057480CrossRefGoogle Scholar
  31. Kammann, C., Grünhage, L., Grüters, U., Janze, S., Jäger, H.-J. 2005Response of aboveground grassland biomass and soil moisture to moderate long-term CO2 enrichmentBasic Appl. Ecol.6351365CrossRefGoogle Scholar
  32. Leadley, P.W., Pascal, N.A., Stocker, R., Körner, C. 1999A field study of the effects of elevated CO2 on plant biomass and community structure in a calcareous grasslandOecologia1183949CrossRefGoogle Scholar
  33. Le Mer, J., Roger, P. 2001Production, oxidation, emission and consumption of methane by soils: a reviewEur. J. Soil Biol.312550CrossRefGoogle Scholar
  34. Lüscher, A., Daepp, M., Blum, H., Hartwig, U.A., Nösberger, J. 2004Fertile temperate grassland under elevated atmospheric CO2-role of feed-back mechanisms and availability of growth resourcesEurop. J. Agron.21379398CrossRefGoogle Scholar
  35. Mikan, C.J., Zak, D.R., Kubiske, M.E., Pregitzer, K.S. 2000Combined effects of atmospheric CO2N availability on the belowground carbon and nitrogen dynamics of aspen mesocosmsOecologia124432445CrossRefGoogle Scholar
  36. Mortensen, L.M., Sæbø, A. 1996The effect of elevated CO2 concentration on growth of Phleum pratense L. in different parts of growth seasonActa Agric. Scand. Sect. B., Soil Plant Sci.46128134Google Scholar
  37. Neftel, A., Blatter, A., Schmid, M., Lehmann, B., Tarakanov, S.V. 2000An experimental determination of the scale length of N2O in the soil of a grasslandJ. Geophys. Res.1051209512103CrossRefGoogle Scholar
  38. Niklaus, P.A., Spinnler, D., Körner, C. 1998Soil moisture dynamics of calcareous grassland under elevated CO2 Oecologia117201208CrossRefGoogle Scholar
  39. Niklaus, P.A., Wohlfender, M., Siegwolf, R., Körner, C. 2001Effects of six years atmospheric CO2 enrichment on plantsoil, and soil microbial C of a calcareous grasslandPlant Soil233189202CrossRefGoogle Scholar
  40. Nowak, R.S, Ellinsworth, D.S., Smith, S.D. 2004Functional responses of plants to elevated atmospheric CO2 – do photosynthetic and productivity data from FACE experiments support early predictions?New Phytol.162253280CrossRefGoogle Scholar
  41. Pihlatie, M., Syväsalo, E., Simojoki, A., Esala, M., Regina, K. 2004Contribution of nitrification and denitrification to N2O production in peatclay and loamy sand under different soil moisture conditionsNutr. Cycl. Agroecosys.70135141CrossRefGoogle Scholar
  42. Richter, M., Hartwig, U.A., Frossard, E., Cadisch, G. 2003Gross fluxes of nitrogen in grassland soil exposed to elevated pCO2 for seven yearsSoil Biol. Biochem.3513251335CrossRefGoogle Scholar
  43. Robertson, L.A., Kuenen, J.G. 1991Physiology of nitrifying and denitrifying bacteriaRogers, J.E.Whitman, W.B. eds. Microbial Production and Consumption of Greenhouse Gases: MethaneNitrogen Oxides, and HalomethanesAmerican Society for MicrobiologyWashington, DC189199Google Scholar
  44. Schneider, M.K., Lüsher, A.S., Richter, M., Aeschlimann, U., Hartwig, U.A., Blum, H., Frossard, E., Nösberger, J. 2004Ten years of free-air CO2 enrichment altered the mobilization of N from soil in Lolium perenne L. swardsGlob. Change Biol.1013771388CrossRefGoogle Scholar
  45. Soussana, J.F., Casella, E., Loiseau, P. 1996Long-term effects of CO2 enrichment and temperature increase on a temperate grass sward. II. Plant nitrogen budgets and root fractionPlant Soil182101114CrossRefGoogle Scholar
  46. Stitt, M. 1991Rising CO2 levels and their potential significance for carbon flow in photosynthetic cellsPlant Cell Environ.14741762CrossRefGoogle Scholar
  47. Stitt, M., Krapp, A. 1999The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular backgroundPlant Cell Environ.22583621CrossRefGoogle Scholar
  48. Ginkel, J.H., Gorissen, A., Veen, J.A. 1997Carbon and nitrogen allocation in Lolium perenne in response to elevated atmospheric CO2 with emphasis on soil carbon dynamicsPlant Soil188299308CrossRefGoogle Scholar
  49. Ginkel, J.H., Gorissen, A. 1998In situ decomposition of grass roots as affected by elevated atmospheric carbon dioxideSoil Sci. Soc. Am. J.62951958CrossRefGoogle Scholar
  50. Velthof, G.L., Oenema, O. 1995Nitrous oxide fluxes from grassland in Netherlands: II Effects of soil typenitrogen fertilizer application and grazingEur. J. Soil Sci.46541549CrossRefGoogle Scholar
  51. Zanetti, S., Hartwig, U.A., Kessel, C., Lüscher, A., Hebeisen, T., Frehner, M., Fischer, B.U., Hendrey, G.R., Blum, H., Nösberger, J. 1997Does nitrogen nutrition restrict the CO2 response of fertile grassland lacking legumes?Oecologia1121725CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Riitta Kettunen
    • 1
  • Sanna Saarnio
    • 1
  • Pertti J. Martikainen
    • 2
  • Jouko Silvola
    • 1
  1. 1.Department of BiologyUniversity of JoensuuJoensuuFinland
  2. 2.Department of Environmental SciencesUniversity of KuopioKuopioFinland

Personalised recommendations