Skip to main content

Advertisement

Log in

Chemical Nature and Diversity of Phosphorus in New Zealand Pasture Soils Using 31P Nuclear Magnetic Resonance Spectroscopy and Sequential Fractionation

  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Information on the phosphorus (P) forms of pasture soils is central to agricultural and environmental sustainability. We used a combination of 31P nuclear magnetic resonance (NMR) spectroscopy of NaOH–EDTA extracts and sequential fractionation to investigate P forms, with an emphasis on organic P in relation to environmental and biophysical variables, in 24 diverse pasture soils taken from around New Zealand (organic C 19–102 g kg−1, total P 116–2746 mg kg−1, pH 5.2–7.0). Soils were separated by cluster analysis of soil physicochemical properties and sequentially extracted P pools into those either derived from volcanic-ash materials or not. This separation was also evident for organic P species in NaOH–EDTA extracts, which removed about 75% of total soil organic P. The major organic P compound class was monoesters (24–60% of extracted P), made up of 14 to 91% myo-inositol hexakisphosphate. The next largest organic P class was diesters (0–4% of P extracted), which were enriched in volcanic-ash soils (monoester to diester ratio = 14) compared to non volcanic-ash soils (ratio = 30). Correlation analysis indicated that mean annual temperature had a significant negative and positive effect on monoester and diester concentrations, respectively. This was attributed to better physical protection of monoesters (especially inositol phosphates) from mineralization, and increased diesters from microbial activity and biological turnover. The anomalous behaviour of volcanic-ash soils was attributed to slow mineralization and the sampling of soils at different times of year without full knowledge of the large and highly dynamic microbial biomass P pool which is predominantly diesters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • T.M. Addiscott D. Thomas (2000) ArticleTitleTillagemineralization and leaching: phosphate Soil Till Res. 53 255–273 Occurrence Handle10.1016/S0167-1987(99)00110-5

    Article  Google Scholar 

  • W. Amelung A. Rodionov I.S. Uresevskaja L. Haumaier W. Zech (2001) ArticleTitleForms of organic phosphorus in zonal steppe soils of Russia assessed by 31P NMR Geoderma 103 335–350 Occurrence Handle10.1016/S0016-7061(01)00047-7

    Article  Google Scholar 

  • G. Anderson (1980) Assessing organic phosphorus in soils F.E. Khasawneh E.C. Sample E.J. Kamprath (Eds) The Role of Phosphorus in Agriculture ASA-CSSA-SSSA Madison, WI 411–431

    Google Scholar 

  • C.N. Bedrock M.V. Cheshire J.A. Chudek B.A. Goodman C.A. Shand (1994) ArticleTitleUse of 31P-NMR to study the forms of phosphorus in peat soils Sci. Tot. Environ. 152 1–8 Occurrence Handle10.1016/0048-9697(94)90545-2

    Article  Google Scholar 

  • R.A. Bowman J.O. Moir (1993) ArticleTitleBasic EDTA as an extractant for soil organic phosphorus Soil Sci. Soc. Am. J. 57 1516–1518

    Google Scholar 

  • B.J. Cade-Menum C.M. Preston (1996) ArticleTitleA comparison of soil extraction procedures for 31P NMR spectroscopy Soil Sci. 161 770–785 Occurrence Handle10.1097/00010694-199611000-00006

    Article  Google Scholar 

  • C.R. Chen L.M. Condron B.L. Turner N. Mahieu M.R. Davis Z.H. Xu R.R. Sherlock (2004) ArticleTitleMineralization of soil orthophosphate monoesters under pine seedlings and ryegrass Aust. J. Soil Res. 42 189–196 Occurrence Handle10.1071/SR03018

    Article  Google Scholar 

  • L.M. Condron H. Tiessen (2005) Interactions of organic phosphorus in terrestrial environments B.L. Turner E. Frossard D.S. Baldwin (Eds) Organic Phosphorus in the Environment CABI Publishing Wallingford, Oxon, UK 295–307

    Google Scholar 

  • L.M. Condron K.M. Goh R.H. Newman J.W.B. Stewart (1985) ArticleTitleNature and distribution of soil phosphorus as revealed by a sequential extraction method followed by 31P-nuclear magnetic resonance analysis J. Soil Sci. 41 41–50

    Google Scholar 

  • L.M. Condron E. Frossard H. Tiessen R.H. Newman J.W.B. Stewart (1990) ArticleTitleChemical nature of organic phosphorus in cultivated and uncultivated soils under different environmental conditions J. Soil Sci. 41 41–50

    Google Scholar 

  • L.M. Condron E. Frossard R.H. Newman P. Tekely J.L. Morel (1997) Use of 31P NMR in the study of soils and the environment M.A. Nanny R.A. Minear J.A. Leenheer (Eds) Nuclear Magnetic Resonance Spectroscopy in Environmental Chemistry Oxford University Press New York 247–271

    Google Scholar 

  • L.M. Condron B.L. Turner B.J. Cade-Menun (2005) Chemistry and dynamics of soil organic phosphorus J.T. Sims A.N. Sharpley (Eds) Phosphorus: Agriculture and the Environment ASA/CSSA/SSSA Madison, Wisconsin 87–121

    Google Scholar 

  • A.F. Cross W.H. Schlesinger (1995) ArticleTitleA literature review and evaluation of the Hedley fractionation: Applications to the biogeochemica.l cycle of soil phosphorus in natural ecosystems Geoderma 64 197–214 Occurrence Handle10.1016/0016-7061(94)00023-4

    Article  Google Scholar 

  • K.H. Dai M.B. David G.F. Vance A.J. Krzyszowska (1996) ArticleTitlecharacterization of phosphorus in a Spruce-Fir spodosol by 31P-NMR spectroscopy Soil Sci. Soc. Am. J. 60 1943–1950

    Google Scholar 

  • C.J. Groot ParticleDe H.L. Golterman (1993) ArticleTitleOn the presence of organic phosphate in some Camargue sediments: evidence for the importance of phytate Hydrobiologia 252 117–126

    Google Scholar 

  • P.K. Donnelly J.A. Entry D.L. Crawford K. Cromack SuffixJr. (1990) ArticleTitleCellulose and lignin degradation in forest soils: Response to moisturetemperatureand acidity Microb. Ecol. 20 289–295

    Google Scholar 

  • E. Frossard L.M. Condron A. Oberson S. Sinaj J.C. Fardeau (2000) ArticleTitleProcesses governing phosphorus availability in temperate soils J. Environ. Qual. 29 15–23

    Google Scholar 

  • GenStat Committee 7 2004. GenStat for Windows: 7th ed. Rothamsted Experimental Station, Lawes Agricultural Trust, Harpenden, UK.

  • H.L. Golterman (1960) ArticleTitleStudies on the cycle of elements in fresh water Acta Bat. 9 1–58

    Google Scholar 

  • H.L. Golterman (1996) ArticleTitleFractionation of sediment phosphate with chelating compounds: a simplification, and comparison with other methods Hydrobiologia 335 87–95

    Google Scholar 

  • H. Golterman J. Paing L. Serrano E. Gomez (1998) ArticleTitlePresence of and phosphate release from polyphosphate or phytate phosphate in lake sediments Hydrobiologia 364 99–104 Occurrence Handle10.1023/A:1003212908511

    Article  Google Scholar 

  • Gómez J.C.C. and López F.J.S. 2004. Mestre-C, Nuclear Magnetic Resonance Companion. v. 3.5.1. Available at http://www.mestrec.com (verified Feb2004).

  • D.G. Gorenstein (1994) ArticleTitleConformation and dynamics of DNA and protein-DNA complexes by 31P NMR Chem. Rev. 94 1315–1338 Occurrence Handle10.1021/cr00029a007

    Article  Google Scholar 

  • M.P. Greaves M.J. Wilson (1969) ArticleTitleThe adsorption of nucleic acids by montmorillonite Soil Biol. Biochem. 1 317–323 Occurrence Handle10.1016/0038-0717(69)90014-5

    Article  Google Scholar 

  • N. Gressel J.G. McColl C.M. Preston R.H. Newman R.F. Powers (1996) ArticleTitleLinkages between phosphorus transformations and carbon decomposition in a forest soil Biogeochemistry 33 97–123 Occurrence Handle10.1007/BF02181034

    Article  Google Scholar 

  • M.J. Hedley J.W.B. Stewart B.S. Chauhan (1982) ArticleTitleChanges in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations Soil Sci. Soc. Am. J. 46 970–976

    Google Scholar 

  • R.H. Jackman (1964) ArticleTitleAccumulation of organic matter in some New Zealand soils under permanent pasture. II. Rates of mineralization of organic matter and the supply of available nutrients NZ J. Ag. Res. 7 472–479

    Google Scholar 

  • I.S. Kulaev V.M. Vagabov (1983) ArticleTitlePolyphosphate metabolism in micro-organisms Adv. Microbial. Physiol. 24 83–471

    Google Scholar 

  • E.T. Levy W.H. Schlesinger (1999) ArticleTitleA comparison of fractionation methods for forms of phosphorus in soils Biogeochemistry 47 25–38

    Google Scholar 

  • A.B. Leytem R.L. Mikkelsen J.W. Gillian (2002) ArticleTitleSorption of organic phosphorus compounds in Atlantic coastal plain soils Soil Sci. 167 652–658 Occurrence Handle10.1097/00010694-200210000-00003

    Article  Google Scholar 

  • R.H. Loeppert W.P. Inskeep (1996) Iron D.L. Sparks A.L. Page P.A. Helmke R.H. Loeppert P.N. Soltanpour M.A. Tabatabai C.T. Johnston M.E. Sumner (Eds) Methods of Soil Analysis, Part 3, Chemical Methods ASA-CSSA-SSSA Madison, WI 639–664

    Google Scholar 

  • J. Magid H. Tiessen L.M. Condron (1996) Dynamics of organic phosphorus in soils under natural and agricultural ecosystems A. Piccolo (Eds) Humic Substances in Terrestrial Ecosystems Elsevier Amsterdam 429–466

    Google Scholar 

  • M.I. Makarov L. Haumaier W. Zech (2002) ArticleTitleNature of soil organic phosphorus: an assessment of peak assignments in the diester region of 31P-NMR spectra Soil Biol. Biochem. 34 1467–1477 Occurrence Handle10.1016/S0038-0717(02)00091-3

    Article  Google Scholar 

  • M.I. Makarov L. Haumaier W. Zech T.I. Malysheva (2004) ArticleTitleOrganic phosphorus compounds in the particle-size fractions of mountain soils in the northwestern Caucasus Geoderma 118 101–114 Occurrence Handle10.1016/S0016-7061(03)00187-3

    Article  Google Scholar 

  • R.W. McDowell R.M. Monaghan (2002) ArticleTitleThe potential for phosphorus loss in relation to nitrogen fertiliser application and cultivation NZ J. Ag Res. 45 245–253

    Google Scholar 

  • R.W. McDowell L.M. Condron (2004) ArticleTitleEstimating phosphorus loss from New Zealand grassland soils NZ J. Ag Res. 47 137–145

    Google Scholar 

  • R.B. McKercher G. Anderson (1968) ArticleTitleContent of inositol penta- and hexaphosphates in some Canadian soils J. Soil Sci. 19 47–55

    Google Scholar 

  • R.H. Newman K.R. Tate (1980) ArticleTitleSoil phosphorus characterisation by 31P nuclear magnetic resonance Commun. Soil Sci. Plant Anal. 11 835–842

    Google Scholar 

  • K.W. Perrott G.P. Mansell (1989) ArticleTitleEffect of fertiliser phosphorus and liming on inorganic and organic soil phosphorus fractions NZ J. Ag Res. 32 63–70

    Google Scholar 

  • K.W. Perrott F.M. Maher B.S. Thorrold (1989) ArticleTitleAccumulation of phosphorus fractions in yellow-brown pumice soils with development NZ J. Ag Res. 32 53–62

    Google Scholar 

  • K.W. Perrott S.U. Sarathchandra J.E. Waller (1990) ArticleTitleSeasonal storage and release of phosphorus and potassium by organic matter and the microbial biomass in a high-producing pastoral soil Aust. J. Soil Res. 28 593–608 Occurrence Handle10.1071/SR9900593

    Article  Google Scholar 

  • K.C. Ruttenberg (1992) ArticleTitleDevelopment of a sequential extraction method for different forms of phosphorus in marine sediments Limnol. Oceanogr. 37 1460–1482

    Google Scholar 

  • L. Stayer (1988) Biochemistry EditionNumber3 W.H. Freeman & Co New York City, NY

    Google Scholar 

  • M. Sumann W. Amelung W. Zech (1998) ArticleTitleClimatic effects on soil organic phosphorus in the North American great plains identified by phosphorus-31 nuclear magnetic resonance Soil Sci. Soc. Am. J. 62 1580–1586

    Google Scholar 

  • K.R. Tate (1984) ArticleTitleThe biological transformation of P in soil Plant Soil. 76 245–256 Occurrence Handle10.1007/BF02205584

    Article  Google Scholar 

  • K.R. Tate R.H. Newman (1982) ArticleTitlePhosphorus fractions of a climosequence of soils in New Zealand tussock grassland Soil Biol. Biochem. 14 191–196 Occurrence Handle10.1016/0038-0717(82)90022-0

    Article  Google Scholar 

  • B.L. Turner A.E. Richardson (2004) ArticleTitleIdentification of scyllo-lnositol phosphates in soil by solution phosphorus-31 nuclear magnetic resonance spectroscopy Soil Sci. Soc. Am. J. 68 802–808

    Google Scholar 

  • B.L. Turner N. Mahieu A.E. Condron (2003a) ArticleTitleThe phosphorus composition of temperate pasture soils determined by NaOH–EDTA extraction and solution 31P NMR spectroscopy Org. Geochem. 34 1199–1210 Occurrence Handle10.1016/S0146-6380(03)00061-5

    Article  Google Scholar 

  • B.L. Turner B.J. Cade-Menun D.T. Westerman (2003b) ArticleTitleOrganic phosphorus composition and potential bioavailability in semi-arid arable soil of the Western United States Soil Sci. Soc. Am. J. 67 1168–1179

    Google Scholar 

  • B.L. Turner N. Mahieu L.M. Condron (2003c) ArticleTitleQuantification of myo-inositol hexakisphosphate in alkaline soil extracts by solution 31P NMR spectroscopy and spectral deconvolution Soil Sci. 168 469–478 Occurrence Handle10.1097/00010694-200307000-00002

    Article  Google Scholar 

  • F.C. Westin G.J. Buntley (1967) ArticleTitleSoil phosphorus in South Dakota: III Phosphorus fractions of some borolls and ustolls Soil Sci. Soc. Am. Proc. 31 521–528

    Google Scholar 

  • J.D.H. Williams J.K. Syers D.E. Armstrong R.F. Harries (1971) ArticleTitleCharacterization of inorganic phosphate in noncalcareous soils Soil Sci. Soc. Am. Proc. 35 556–560

    Google Scholar 

  • H. Zunino F. Borie S. Aguilera J.P. Martin K. Haider (1982) ArticleTitleDecomposition of 14C-labelled glucose plant and microbial products and phenols in volcanic ash-derived soils of Chile Soil Biol. Biochem. 14 37–43 Occurrence Handle10.1016/0038-0717(82)90074-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. W. McDowell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDowell, R.W., Condron, L.M., Stewart, I. et al. Chemical Nature and Diversity of Phosphorus in New Zealand Pasture Soils Using 31P Nuclear Magnetic Resonance Spectroscopy and Sequential Fractionation. Nutr Cycl Agroecosyst 72, 241–254 (2005). https://doi.org/10.1007/s10705-005-2921-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-005-2921-8

Keywords

Navigation