Nutrient Cycling in Agroecosystems

, Volume 72, Issue 3, pp 241–254 | Cite as

Chemical Nature and Diversity of Phosphorus in New Zealand Pasture Soils Using 31P Nuclear Magnetic Resonance Spectroscopy and Sequential Fractionation

  • R. W. McDowell
  • L. M. Condron
  • I. Stewart
  • V. Cave


Information on the phosphorus (P) forms of pasture soils is central to agricultural and environmental sustainability. We used a combination of 31P nuclear magnetic resonance (NMR) spectroscopy of NaOH–EDTA extracts and sequential fractionation to investigate P forms, with an emphasis on organic P in relation to environmental and biophysical variables, in 24 diverse pasture soils taken from around New Zealand (organic C 19–102 g kg−1, total P 116–2746 mg kg−1, pH 5.2–7.0). Soils were separated by cluster analysis of soil physicochemical properties and sequentially extracted P pools into those either derived from volcanic-ash materials or not. This separation was also evident for organic P species in NaOH–EDTA extracts, which removed about 75% of total soil organic P. The major organic P compound class was monoesters (24–60% of extracted P), made up of 14 to 91% myo-inositol hexakisphosphate. The next largest organic P class was diesters (0–4% of P extracted), which were enriched in volcanic-ash soils (monoester to diester ratio = 14) compared to non volcanic-ash soils (ratio = 30). Correlation analysis indicated that mean annual temperature had a significant negative and positive effect on monoester and diester concentrations, respectively. This was attributed to better physical protection of monoesters (especially inositol phosphates) from mineralization, and increased diesters from microbial activity and biological turnover. The anomalous behaviour of volcanic-ash soils was attributed to slow mineralization and the sampling of soils at different times of year without full knowledge of the large and highly dynamic microbial biomass P pool which is predominantly diesters.


31P NMR Diesters Monoesters Organic phosphorus Phytate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Addiscott, T.M., Thomas, D. 2000Tillagemineralization and leaching: phosphateSoil Till Res.53255273CrossRefGoogle Scholar
  2. Amelung, W., Rodionov, A., Uresevskaja, I.S., Haumaier, L., Zech, W. 2001Forms of organic phosphorus in zonal steppe soils of Russia assessed by 31P NMRGeoderma103335350CrossRefGoogle Scholar
  3. Anderson, G. 1980Assessing organic phosphorus in soilsKhasawneh, F.E.Sample, E.C.Kamprath, E.J. eds. The Role of Phosphorus in AgricultureASA-CSSA-SSSAMadison, WI411431Google Scholar
  4. Bedrock, C.N., Cheshire, M.V., Chudek, J.A., Goodman, B.A., Shand, C.A. 1994Use of 31P-NMR to study the forms of phosphorus in peat soilsSci. Tot. Environ.15218CrossRefGoogle Scholar
  5. Bowman, R.A., Moir, J.O. 1993Basic EDTA as an extractant for soil organic phosphorusSoil Sci. Soc. Am. J.5715161518Google Scholar
  6. Cade-Menum, B.J., Preston, C.M. 1996A comparison of soil extraction procedures for 31P NMR spectroscopySoil Sci.161770785CrossRefGoogle Scholar
  7. Chen, C.R., Condron, L.M., Turner, B.L., Mahieu, N., Davis, M.R., Xu, Z.H., Sherlock, R.R. 2004Mineralization of soil orthophosphate monoesters under pine seedlings and ryegrassAust. J. Soil Res.42189196CrossRefGoogle Scholar
  8. Condron, L.M., Tiessen, H. 2005Interactions of organic phosphorus in terrestrial environmentsTurner, B.L.Frossard, E.Baldwin, D.S. eds. Organic Phosphorus in the EnvironmentCABI PublishingWallingford, Oxon, UK295307Google Scholar
  9. Condron, L.M., Goh, K.M., Newman, R.H., Stewart, J.W.B. 1985Nature and distribution of soil phosphorus as revealed by a sequential extraction method followed by 31P-nuclear magnetic resonance analysisJ. Soil Sci.414150Google Scholar
  10. Condron, L.M., Frossard, E., Tiessen, H., Newman, R.H., Stewart, J.W.B. 1990Chemical nature of organic phosphorus in cultivated and uncultivated soils under different environmental conditionsJ. Soil Sci.414150Google Scholar
  11. Condron, L.M., Frossard, E., Newman, R.H., Tekely, P., Morel, J.L. 1997Use of 31P NMR in the study of soils and the environmentNanny, M.A.Minear, R.A.Leenheer, J.A. eds. Nuclear Magnetic Resonance Spectroscopy in Environmental ChemistryOxford University PressNew York247271Google Scholar
  12. Condron, L.M., Turner, B.L., Cade-Menun, B.J. 2005Chemistry and dynamics of soil organic phosphorusSims, J.T.Sharpley, A.N. eds. Phosphorus: Agriculture and the EnvironmentASA/CSSA/SSSAMadison, Wisconsin87121Google Scholar
  13. Cross, A.F., Schlesinger, W.H. 1995A literature review and evaluation of the Hedley fractionation: Applications to the biogeochemica.l cycle of soil phosphorus in natural ecosystemsGeoderma64197214CrossRefGoogle Scholar
  14. Dai, K.H., David, M.B., Vance, G.F., Krzyszowska, A.J. 1996characterization of phosphorus in a Spruce-Fir spodosol by 31P-NMR spectroscopySoil Sci. Soc. Am. J.6019431950Google Scholar
  15. Groot, C.J., Golterman, H.L. 1993On the presence of organic phosphate in some Camargue sediments: evidence for the importance of phytateHydrobiologia252117126Google Scholar
  16. Donnelly, P.K., Entry, J.A., Crawford, D.L., Cromack, K.,Jr. 1990Cellulose and lignin degradation in forest soils: Response to moisturetemperatureand acidityMicrob. Ecol.20289295Google Scholar
  17. Frossard, E., Condron, L.M., Oberson, A., Sinaj, S., Fardeau, J.C. 2000Processes governing phosphorus availability in temperate soilsJ. Environ. Qual.291523Google Scholar
  18. GenStat Committee 7 2004. GenStat for Windows: 7th ed. Rothamsted Experimental Station, Lawes Agricultural Trust, Harpenden, UK.Google Scholar
  19. Golterman, H.L. 1960Studies on the cycle of elements in fresh waterActa Bat.9158Google Scholar
  20. Golterman, H.L. 1996Fractionation of sediment phosphate with chelating compounds: a simplification, and comparison with other methodsHydrobiologia3358795Google Scholar
  21. Golterman, H., Paing, J., Serrano, L., Gomez, E. 1998Presence of and phosphate release from polyphosphate or phytate phosphate in lake sedimentsHydrobiologia36499104CrossRefGoogle Scholar
  22. Gómez J.C.C. and López F.J.S. 2004. Mestre-C, Nuclear Magnetic Resonance Companion. v. 3.5.1. Available at (verified Feb2004).
  23. Gorenstein, D.G. 1994Conformation and dynamics of DNA and protein-DNA complexes by 31P NMRChem. Rev.9413151338CrossRefGoogle Scholar
  24. Greaves, M.P., Wilson, M.J. 1969The adsorption of nucleic acids by montmorilloniteSoil Biol. Biochem.1317323CrossRefGoogle Scholar
  25. Gressel, N., McColl, J.G., Preston, C.M., Newman, R.H., Powers, R.F. 1996Linkages between phosphorus transformations and carbon decomposition in a forest soilBiogeochemistry3397123CrossRefGoogle Scholar
  26. Hedley, M.J., Stewart, J.W.B., Chauhan, B.S. 1982Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubationsSoil Sci. Soc. Am. J.46970976Google Scholar
  27. Jackman, R.H. 1964Accumulation of organic matter in some New Zealand soils under permanent pasture. II. Rates of mineralization of organic matter and the supply of available nutrientsNZ J. Ag. Res.7472479Google Scholar
  28. Kulaev, I.S., Vagabov, V.M. 1983Polyphosphate metabolism in micro-organismsAdv. Microbial. Physiol.2483471Google Scholar
  29. Levy, E.T., Schlesinger, W.H. 1999A comparison of fractionation methods for forms of phosphorus in soilsBiogeochemistry472538Google Scholar
  30. Leytem, A.B., Mikkelsen, R.L., Gillian, J.W. 2002Sorption of organic phosphorus compounds in Atlantic coastal plain soilsSoil Sci.167652658CrossRefGoogle Scholar
  31. Loeppert, R.H., Inskeep, W.P. 1996IronSparks, D.L.Page, A.L.Helmke, P.A.Loeppert, R.H.Soltanpour, P.N.Tabatabai, M.A.Johnston, C.T.Sumner, M.E. eds. Methods of Soil Analysis, Part 3, Chemical MethodsASA-CSSA-SSSAMadison, WI639664SSSA Book Series no 5Google Scholar
  32. Magid, J., Tiessen, H., Condron, L.M. 1996Dynamics of organic phosphorus in soils under natural and agricultural ecosystemsPiccolo, A. eds. Humic Substances in Terrestrial EcosystemsElsevierAmsterdam429466Google Scholar
  33. Makarov, M.I., Haumaier, L., Zech, W. 2002Nature of soil organic phosphorus: an assessment of peak assignments in the diester region of 31P-NMR spectraSoil Biol. Biochem.3414671477CrossRefGoogle Scholar
  34. Makarov, M.I., Haumaier, L., Zech, W., Malysheva, T.I. 2004Organic phosphorus compounds in the particle-size fractions of mountain soils in the northwestern CaucasusGeoderma118101114CrossRefGoogle Scholar
  35. McDowell, R.W., Monaghan, R.M. 2002The potential for phosphorus loss in relation to nitrogen fertiliser application and cultivationNZ J. Ag Res.45245253Google Scholar
  36. McDowell, R.W., Condron, L.M. 2004Estimating phosphorus loss from New Zealand grassland soilsNZ J. Ag Res.47137145Google Scholar
  37. McKercher, R.B., Anderson, G. 1968Content of inositol penta- and hexaphosphates in some Canadian soilsJ. Soil Sci.194755Google Scholar
  38. Newman, R.H., Tate, K.R. 1980Soil phosphorus characterisation by 31P nuclear magnetic resonanceCommun. Soil Sci. Plant Anal.11835842Google Scholar
  39. Perrott, K.W., Mansell, G.P. 1989Effect of fertiliser phosphorus and liming on inorganic and organic soil phosphorus fractionsNZ J. Ag Res.326370Google Scholar
  40. Perrott, K.W., Maher, F.M., Thorrold, B.S. 1989Accumulation of phosphorus fractions in yellow-brown pumice soils with developmentNZ J. Ag Res.325362Google Scholar
  41. Perrott, K.W., Sarathchandra, S.U., Waller, J.E. 1990Seasonal storage and release of phosphorus and potassium by organic matter and the microbial biomass in a high-producing pastoral soilAust. J. Soil Res.28593608CrossRefGoogle Scholar
  42. Ruttenberg, K.C. 1992Development of a sequential extraction method for different forms of phosphorus in marine sedimentsLimnol. Oceanogr.3714601482Google Scholar
  43. Stayer, L. 1988Biochemistry3W.H. Freeman & CoNew York City, NYGoogle Scholar
  44. Sumann, M., Amelung, W., Zech, W. 1998Climatic effects on soil organic phosphorus in the North American great plains identified by phosphorus-31 nuclear magnetic resonanceSoil Sci. Soc. Am. J.6215801586Google Scholar
  45. Tate, K.R. 1984The biological transformation of P in soilPlant Soil.76245256CrossRefGoogle Scholar
  46. Tate, K.R., Newman, R.H. 1982Phosphorus fractions of a climosequence of soils in New Zealand tussock grasslandSoil Biol. Biochem.14191196CrossRefGoogle Scholar
  47. Turner, B.L., Richardson, A.E. 2004Identification of scyllo-lnositol phosphates in soil by solution phosphorus-31 nuclear magnetic resonance spectroscopySoil Sci. Soc. Am. J.68802808Google Scholar
  48. Turner, B.L., Mahieu, N., Condron, A.E. 2003aThe phosphorus composition of temperate pasture soils determined by NaOH–EDTA extraction and solution 31P NMR spectroscopyOrg. Geochem.3411991210CrossRefGoogle Scholar
  49. Turner, B.L., Cade-Menun, B.J., Westerman, D.T. 2003bOrganic phosphorus composition and potential bioavailability in semi-arid arable soil of the Western United StatesSoil Sci. Soc. Am. J.6711681179Google Scholar
  50. Turner, B.L., Mahieu, N., Condron, L.M. 2003cQuantification of myo-inositol hexakisphosphate in alkaline soil extracts by solution 31P NMR spectroscopy and spectral deconvolutionSoil Sci.168469478CrossRefGoogle Scholar
  51. Westin, F.C., Buntley, G.J. 1967Soil phosphorus in South Dakota: III Phosphorus fractions of some borolls and ustollsSoil Sci. Soc. Am. Proc.31521528Google Scholar
  52. Williams, J.D.H., Syers, J.K., Armstrong, D.E., Harries, R.F. 1971Characterization of inorganic phosphate in noncalcareous soilsSoil Sci. Soc. Am. Proc.35556560Google Scholar
  53. Zunino, H., Borie, F., Aguilera, S., Martin, J.P., Haider, K. 1982Decomposition of 14C-labelled glucose plant and microbial products and phenols in volcanic ash-derived soils of ChileSoil Biol. Biochem.143743CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • R. W. McDowell
    • 1
  • L. M. Condron
    • 2
  • I. Stewart
    • 3
  • V. Cave
    • 1
  1. 1.Invermay Agricultural CentreAgResearch LtdMosgielNew Zealand
  2. 2.Agriculture and Life SciencesLincoln UniversityCanterburyNew Zealand
  3. 3.Department of ChemistryUniversity of OtagoDunedinNew Zealand

Personalised recommendations