Nutrient Cycling in Agroecosystems

, Volume 72, Issue 2, pp 147–157 | Cite as

Biological System for Improving the Availability of Tilemsi Phosphate Rock for Wheat (Triticum aestivum L.) Cultivated in Mali

  • A. H. Babana
  • H. Antoun


The Tilemsi phosphate rock (TPR) of Mali is a good and cheaper alternative to imported phosphate fertilizers. Many soil microorganisms can also mobilize sparingly soluble inorganic phosphates, and several have a good potential to improve plant growth. With the aim of improving the response of wheat cultivated in Mali to fertilization with TPR, in this work we describe the isolation and selection from four different Malian soils of TPR-solubilizing microorganisms (TSM) with high P-mobilization activities. When the rhizosphere of three wheat cultivars (Alkama Beri, Hindi Tossom and Tetra) was used to isolate TSM, only bacterial isolates were selected. TPR-solubilizing fungi were only obtained by soil enrichment in liquid medium containing TPR as sole P source. In the rhizosphere a significant correlation was observed between the total microbial population and the number of microorganisms solubilizing TPR. No such correlation was observed in the rhizoplane. Initially 44 bacteria and 18 fungi were selected, but after 10 subcultures on agar plates and a liquid medium, only 6 bacteria and 2 fungi retained their high P solubilizing trait. A field inoculation trial was established during the growing season 2000–2001 in Koygour. Wheat cv. Tetra was inoculated with the 8 selected TSM (6 bacteria and 2 fungi) and fertilized with 30 kg ha−1 P added as TPR or diammonium phosphate (DAP). The growth parameters measured were plant height at 30 and 60 days, the number of leaves per main stem at 60 days, and root and shoot dry matter yields 60 days after planting. Root colonization by indigenous arbuscular mycorrhizas (AM) was also measured in 45-day-old plants. Significant interactions were observed between TSM inoculation and P-fertilization for root colonization with AM, plant height at 30 days and root dry matter yield. The bacterial isolate Pseudomonas sp. BR2, which appeared to be a mycorrhiza helper bacterium, significantly enhanced wheat seedling emergence very early (5 days after planting) under field condition, and caused 128% increase in root dry matter yield. The two TPR-solubilizing fungal isolates Aspergillus awamori Nakazawa C1 and Penicillium chrysogenum Thom C13 also caused respectively 60 and 44% increases in root dry matter yields. The choice of the TSM BR2, C1 and C13 for further field trials is discussed.


Aspergillus awamori Mycorrhiza helper bacteria Penicillium chrysogenum Phosphate solubilizing microorganisms Plant growth promotion Pseudomonas sp. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Karaki, G.N. 1998Benefitcost and water-use efficiency of arbuscular mycorrhizal durum wheat grown under drought stressMycorrhiza84145CrossRefGoogle Scholar
  2. Babana A.H. and Antoun H. 2005. Effect of Tilemsi phosphate rock-solubilizing microorganisms on phosphorus uptake and yield of field-grown wheat (Triticum aestivum L.) in Mali. Plant Soil: in press.Google Scholar
  3. Bakker, A.W., Schippers, B. 1987Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp.-mediated plant growth-stimulationSoil Biol. Biochem.19451457CrossRefGoogle Scholar
  4. Barea, J.M., Escudero, J.L., Azcón-Aguilar, C. 1980Effects of introduced and indigenous VA mycorrhizal fungi on nodulation, growth and nutrition of Medicago sativa in phosphate-fixing soils as affected by P-fertilizersPlant Soil54283296CrossRefGoogle Scholar
  5. Barea, J.M., Azcon, R., Azcon-Aguilar, C. 2002Mycorrhizosphere interactions to improve plant fitness and soil qualityAntonie van Leeuwenhoek81343351CrossRefPubMedGoogle Scholar
  6. Bationo, A., Ayuk, E., Ballo, D., Koné, M. 1997Agronomic and economic evaluation of Tilemsi phosphate rock in different agroecological zones of MaliNutrient cycling Agrosyst.48179189CrossRefGoogle Scholar
  7. Bolland, M.D.A., Gilkes, R.J. 1997The agronomic effectiveness of reactive phosphate rocks. 2. Effect of phosphate rock reactivityAust. J. Exp. Agric.37937946CrossRefGoogle Scholar
  8. Bric, J.M., Bostock, R.M., Silverstone, S.E. 1991Rapid in situ assay for indoleacetic acid production by bacteria immobilized on nitrocellulose membraneAppl. Environ. Microbiol.57535538Google Scholar
  9. Chabot, R., Antoun, H., Cescas, M.P. 1993Stimulation de la croissance du maïs et de la laitue romaine par des microorganismes dissolvant le phosphore inorganiqueCan. J. Microbiol.39941947Google Scholar
  10. Chabot, R., Antoun, H., Cescas, M.P. 1996Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar phaseoliPlant Soil184311321Google Scholar
  11. Freitas, J.R., Germida, J.J. 1990Plant growth promoting rhizobacteria for winter wheatCan. J. Microbiol.36264272Google Scholar
  12. Freitas, J.R., Banerjee, M.R., Germida, J.J. 1997Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.)Biol. Fertil. Soils.24358364CrossRefGoogle Scholar
  13. Entry, J.A., Rygiewicz, P.T., Watrud, L.S., Donnelly, P.K. 2002Influence of adverse soil conditions on the formation and function of arbuscular mycorrhizasAdv. Environ. Res.7123138CrossRefGoogle Scholar
  14. Gagné, S., Antoun, H., Richard, C. 1985Inhibition des champignons phytopathogènes par des bactéries isolées du sol et de la rhizosphère de légumineusesCan. J. Microbiol.31856860Google Scholar
  15. Gaines, P.T., Mitchell, A.G. 1979Chemical methods for Soil and Plant AnalysisUniversity of GeorgiaCoastal Plain Station, Tifton, USA105Google Scholar
  16. Germida, J.J., Walley, F.L. 1996Plant growth-promoting rhizobacteria alter rooting patterns and arbuscular mycorrhizal fungi colonization of field-grown spring wheatBiol. Fert. Soils23113120Google Scholar
  17. Goldstein, A.H. 1986Bacterial solubilization of mineral phosphate: historical perspective and future prospectsAm. J. Altern. Agric.15157Google Scholar
  18. Graham, J.H., Abbott, L.K. 2000Wheat responses to aggressive and non-aggressive arbuscular mycorrhizal fungiPlant Soil220207218CrossRefGoogle Scholar
  19. Gyaneshwar, P., Naresh Kumar, G.L., Parekh, J., Poole, P.S. 2002Role of soil microorganisms in improving P nutrition of plantsPlant Soil2458393CrossRefGoogle Scholar
  20. Kennedy, A.C. 1999The Rhizosphere and the spermosphereSylvia, D.M.Fuhrmann, J.J.Hartel, P.G.Zuberer, D.A. eds. Principles and Applications of Soil MicrobiologyPrentice HallToronto389407Google Scholar
  21. Knox, O.G.G., Killham, K., Mullins, C.E., Wilson, M.J. 2003Nematode-enhanced microbial colonization of the wheat rhizosphereFEMS Microbiol. Let.225227233CrossRefGoogle Scholar
  22. Large, E.C. 1954Growth stages in cereals: illustration of the Feekes scalePlant Pathol.3128129Google Scholar
  23. McKeague, J.A. eds. 1978Manual of Soil Sampling and Methods of AnalysisCanadian Soil Survey Committee Canadian Society of Soil ScienceOttawa223Google Scholar
  24. Mehlich, A. 1984Mehlich 3 soil test extractant: a modification of Mehlich 2 extractantCommun. Soil Sci. Plant Anal.1514091416Google Scholar
  25. Milagres, A.M.F., Machuca, A., Napoleao, D. 1999Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assayJ. Microbiol. Methods3716CrossRefPubMedGoogle Scholar
  26. Nautiyal, C.S. 1999An efficient microbiological growth medium for screening phosphate solubilizing microorganismsFEMS Microbiol. Lett.170265270CrossRefPubMedGoogle Scholar
  27. Reyes, I., Bernier, L., Antoun, H. 2002Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strains of Penicillium rugulosumMicrob. Ecol.443948CrossRefPubMedGoogle Scholar
  28. Richardson, A.E. 2001Prospects for using soil microorganisms to improve the acquisition of phosphorus by plantsAust. J. Plant Physiol.28897906Google Scholar
  29. Rodriguez, H., Fraga, R. 1999Phosphate solubilizing bacteria and their role in plant growth promotionBiotechnol. Adv.17319339CrossRefPubMedGoogle Scholar
  30. SAS, Institute Inc1990SAS procedure guide version 6 editionSAS Institute IncCarNC705Google Scholar
  31. Scher, F.M., Zieglle, J.S., Klopper, J.W. 1984A method for assessing the root-colonizing capacity of bacteria on maizeCan. J. Microbiol.30151157Google Scholar
  32. Steel, R.G.D., Torrie, J.H. 1980Principles and procedures of statistics, a biometrical approachMacGraw-Hill Book CoNew YorkGoogle Scholar
  33. Tandon, H.L.S., Cescas, M.P., Tyner, E.H. 1968An acid-free vanadate-molybdate reagent for the determination of total phosphorus in soilsSoil Sci. Soc. Am. Proc.324851Google Scholar
  34. Vierheilig, H., Goughlan, A.P., Wyss, U., Piché, Y. 1998Ink and vinegara simple technique for arbuscular-mycorrhizal fungiAppl. Environ. Microbiol.6450045007PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Faculté des Sciences et TechniquesUniversité du MaliBamakoMali
  2. 2.Département des Sols et de Génie Agroalimentaire, Faculté des Sciences de l’Agriculture et de l’Alimentation, Pavillon Charles-Eugène MarchandUniversité LavalQuébecCanada

Personalised recommendations