Nutrient Cycling in Agroecosystems

, Volume 72, Issue 1, pp 3–11 | Cite as

A Review of the Movement and Fate of N2O in the Subsoil

  • T.J. Clough
  • R.R. Sherlock
  • D.E. Rolston


Understanding the fate of N2O in the subsoil is important in accurately assessing the direct and indirect fluxes of N2O to the environment. The production, movement and ultimate fate of N2O in the subsoil are all poorly understood. Movement of N2O in the subsoil occurs predominantly via diffusion but convective fluxes can also occur. Diffusion gradients in the soil have been used to determine N2O surface fluxes with varying success. Infiltration of water into the soil may lead to entrapment, and the temporary storage of N2O, ebullition, or the transport of dissolved N2O in soil leachates. The reduction of N2O to N2 is potentially enhanced when N2O is entrapped. Few studies have examined the effect of infiltrating water on a previously known N2O concentration in the soil. Future studies are required to better establish the consumption and movement of N2O in the subsoil during water infiltration. This paper reviews past work on the movement and fate of N2O in the subsoil and makes suggestions for future studies.

Key words

Convection Denitrification Diffusion Ebullition Entrapment Indirect N2O losses 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Addy, K., Kellogg, D.Q., Gold, A.J., Groffman, P.M., Ferendo, G., Sawyer, C. 2002In situ push–pull method to determine ground water denitrification in Riparian ZonesJ. Environ. Qual.3110171024PubMedGoogle Scholar
  2. Aulakh, M.S., Doran, J.W., Mosier, A.R. 1992Soil denitrification: significancemeasurement and effects of managementAdv. Soil Sci.18157Google Scholar
  3. Ball, B.C., Glasbey, C.A., Robertson, E.A.G. 1994Measurement of soil gas diffusivity in situEur. J. Soil Sci.45313Google Scholar
  4. Barr, R.F., Watts, H. 1972Diffusion of some organic and inorganic compounds in airJ. Chem. Eng. Data174546CrossRefGoogle Scholar
  5. Bremner, J.M. 1997Sources of nitrous oxide in soilsNutr. Cycl. Agroecosyst.49716CrossRefGoogle Scholar
  6. Christensen, S. 1985Denitrification in a sandy loam as influenced by climatic and soil conditionsTidsskr. Plantteavl.89351365Google Scholar
  7. Clough, T.J., Jarvis, S.C., Dixon, E.R., Stevens, R.J., Laughlin, R.J., Hatch, D.J. 1999Carbon induced subsoil denitrification of 15N-labelled nitrate in 1 m deep soil columnsSoil Biol. Biochem.313141CrossRefGoogle Scholar
  8. Clough, T.J., Sherlock, R.R., Cameron, K.C., Stevens, R.J., Laughlin, R.J., Muller, C. 2001Resolution of the 15N balance enigma?Aust. J. Soil Res.3914191431CrossRefGoogle Scholar
  9. Clough, T.J., Rolston, D.E., Stevens, R.J., Laughlin, R.J. 2003N2O and N2 gas fluxes, soil gas pressures, and ebullition events following irrigation of 15NO3 -labelled subsoilsAust. J. Soil Res.41401420CrossRefGoogle Scholar
  10. Crutzen, P.J. 1981Atmospheric chemical processes of the oxides of nitrogen, including nitrous oxideDelwiche, C.C. eds. Denitrification, Nitrification and Atmospheric Nitrous OxideWileyNew York1744Google Scholar
  11. Culligan, P.J., Barry, D.A., Parlange, J.Y., Steenhuis, T.S., Haverkamp, R. 2000Infiltration with controlled air escapeWater Resour. Res.36781785CrossRefGoogle Scholar
  12. Dendooven, L., Duchateau, L., Anderson, J.M. 1996Denitrification as affected by the previous water-regime of the soilSoil Biol. Biochem.28239245CrossRefGoogle Scholar
  13. Dixon, R.M., Linden, D.R. 1972Soil air pressure and water infiltration under border irrigationSoil Sci. Soc. Am. Proc.36948953Google Scholar
  14. Firestone, M.K. 1982Biological denitrificationStevenson, F.J. eds. Nitrogen in Agricultural Soils. Agronomy Monograph No. 22American Society of Agronomy Soil Science Society of AmericaMadison, WI289326Google Scholar
  15. Firestone, M.K., Smith, M.S., Firestone, R.B., Tiedje, J.M. 1979The influence of nitratenitriteand oxygen on the consumption of the gaseous products of denitrification in soilSoil Sci. Soc. Am. J.4311401144Google Scholar
  16. Groffman, P.M., Gold, A.J., Kellog, D.Q., Addy, K.,  et al. 2002Mechanisms, rates and assessment of N2O in groundwaterriparian zones and riversHam, J. eds. Non-CO2 Greenhouse Gases: Scientific Understanding, Control Options and Policy AspectsMillpressRotterdamProceedings of the Third International SymposiumMaastrichtThe NetherlandsGoogle Scholar
  17. Heincke, M., Kaupenjohann, M. 1999Effects of soil solution on the dynamics of N2O emissions: a reviewNutr. Cycl. Agroecosyst.55133157CrossRefGoogle Scholar
  18. Henault, C., Cheneby, D., Heurlier, K., Garrido, F., Perez, S., Germon, J.C. 2001Laboratory kinetics of soil denitrification are useful to discriminate soils with potentially high levels of N2O emission on the field scaleAgronomie21713723CrossRefGoogle Scholar
  19. Holt, L.S., Christianson, C.B., Austin, E.R., Katayl, J.C. 1988A laboratory technique for releasing and measuring denitrification products trapped in soilSoil Sci. Soc. Am. J.5215101511Google Scholar
  20. Hosen, Y., Paisancharoen, K., Tsuruta, H. 2002Effects of deep application of urea on NO and N2O emissions from an AndisolNutr. Cycl. Agroecosyst.63197206CrossRefGoogle Scholar
  21. Jarvis, S.C., Hatch, D.J. 1994Potential for denitrification at depth below long-term grass swardsSoil Biol. Biochem.2616291636CrossRefGoogle Scholar
  22. Jaynes, D.B., Rogowski, A.S. 1983Applicability of Fick’s law to gas diffusionSoil Sci. Soc. Am. J.47425430Google Scholar
  23. Jellick, G.J., Schnabel, R.R. 1986Evaluation of a field method for determining the gas diffusion coefficient in soilsSoil Sci. Soc. Am. J.501823Google Scholar
  24. Jury, W.A., Letey, J., Collins, T. 1982Analysis of chamber methods used for measuring nitrous oxide production in the fieldSoil Sci. Soc. Am. J.46250256Google Scholar
  25. Jury, W.A., Gardner, W.R., Gardner, W.H. 1991Soil Physics5John Wiley & Sons Inc.New YorkGoogle Scholar
  26. Kammann, C., Grünhage, L., Jäger, H.J. 2001A new sampling technique to monitor concentrations of CH4N2O and CO2 in air at well defined depths in soils with varied water potentialEur. J. Soil Sci.52297303CrossRefGoogle Scholar
  27. Kessavalou, A., Doran, J.W., Mosier, A.R., Drijber, R.A. 1998Greenhouse gas fluxes following tillage and wetting in a wheat–fallow cropping systemJ. Environ. Qual.2711051116Google Scholar
  28. Kroeze, C., Faassen, H.G., Ruiter, P.C. 1989Potential denitrification rates in acid soils under pine forestNeth. J. Agric. Sci.37345354Google Scholar
  29. Lai, S.H., Tiedje, J.M., Erickson, A.E. 1976In situ measurement of gas diffusion coefficient in soilsSoil Sci. Soc. Am. J.4036Google Scholar
  30. Letey, J., Jury, W.A., Hadas, A., Valoras, N. 1980Gas diffusion as a factor in laboratory incubation studies on denitrificationJ. Environ. Qual.9223227Google Scholar
  31. Lindau, C.W., Patrick, W.H., DeLaune, R.D., Reddy, K.R., Bollich, K.R. 1988Entrapment of nitrogen-15 dinitrogen during soil denitrificationSoil Sci. Soc. Am. J.52538540Google Scholar
  32. Lindau, A.C., DeLaune, R.D. 1991Dinitrogen and nitrous oxide emission and entrapment in Spartina alternifloa saltmarsh soils following addition of N-15 labelled ammonium and nitrateEstaur. Coast. Shelf Sci.32161172Google Scholar
  33. Linden, D.R., Dixon, R.M. 1973Infiltration and water table effects of soil air pressure under border irrigationSoil Sci. Soc. Am. Proc.379498Google Scholar
  34. Maljanen, M., Liikanen, A., Silvola, J., Martikainen, P.J. 2003Measuring N2O emissions from organic soils by closed chamber or soil/snow N2O gradient methodsEur. J. Soil Sci.54625631CrossRefGoogle Scholar
  35. McCarty, G.W., Bremner, J.M. 1992Availability of organic carbon for denitrification of nitrate in subsoilsBiol. Fert. Soils14219222CrossRefGoogle Scholar
  36. Mei, L., Yang, L., Wang, D., Yin, B., Hu, J., Yin, S. 2004Nitrous oxide production and consumption in serially diluted soil suspensions as related to in situ N2O emission in submerged soilsSoil Biol. Biochem.3610571066CrossRefGoogle Scholar
  37. Mosier, A., Kroeze, C., Nevison, C., Oenema, O., Seitzinger, S., Vancleemput, O. 1998Closing the global N2O budget – nitrous oxide emissions through the agricultural nitrogen cycle – OECD/IPCC/IEA phase II development of IPCC guidelines for national greenhouse gas inventory methodologyNutr. Cycl. Agroecosyst.52225248CrossRefGoogle Scholar
  38. Müller, C., Stevens, R.J., Laughlin, R.J., Jäger, H.J. 2004Microbial processes and the site of N2O production in a temperate grassland soilSoil Biol. Biochem.36453461CrossRefGoogle Scholar
  39. Murray, P.E., Hatch, D.J., Dixon, E.R., Stevens, R.J., Laughlin, R.J., Jarvis, S.C. 2004Denitrification potential in a grassland subsoil: effect of carbon substratesSoil Biol. Biochem.36545547CrossRefGoogle Scholar
  40. Pritchard, D.T., Currie, J.A. 1982Diffusion coefficients of carbon monoxidenitrous oxideethylene and ethane in air and their measurementJ. Soil Sci.33175184Google Scholar
  41. Renault, P., Mohrath, D., Gaudu, J.C., Fumanal, J.C. 1998Air pressure fluctuations in a prairie soilSoil Sci. Soc. Am. J.62553563Google Scholar
  42. Renault P., Khalil K., Dassonville F., Mohrath D., Lensi R., Chadoeuf J., Chenu C., Bidel L. and Lafolie F. 2002. Interactions between gas transport and biogeochemical processes: the effect of soil structure. 17th World Congress of Soil Science, Bangkok, Thailand, 14–20 August 2002. Scholar
  43. Rolston, D.E. 1978Application of gaseous-diffusion theory to the measurement of denitrificationNielsen, D.R.MacDonald, J.G. eds. Nitrogen in the EnvironmentNitrogen Behaviour in the FieldVol. 1Academic PressNew York309335Google Scholar
  44. Rolston, D.E. 1986Gas diffusivityKlute, A. eds. Methods of Soil Analysis, Part 1Monograph 9, American Society of AgronomyMadison, WIGoogle Scholar
  45. Rolston, D.E., Fried, M., Goldhamer, D.A. 1976Denitrification measured directly from nitrogen and nitrous oxide gas fluxesSoil Sci. Soc. Am. J.40259266Google Scholar
  46. Rolston, D.E., Glauze, R.D., Grundmann, G.L., Louie, D.T. 1991Evaluation of an in situ method for gas diffusivity in surface soilsSoil Sci. Soc. Am. J.5515361542Google Scholar
  47. Russow, R., Knappe, S., Neue, H.U.,  et al. 2002The N2O content of soil air at different depths as well as its related content in and transport by seepage in lysimeter soilsHam, J. eds. Non-CO2 Greenhouse Gases: Scientific Understanding, Control Options and Policy AspectsMillpressRotterdam714Proceedings of the Third International SymposiumMaastrichtThe NetherlandsGoogle Scholar
  48. Smith, K.A., Ball, T., Conen, F., Dobbie, K.E., Massheder, J., Rey, A. 2003Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical and biological processesEur. J. Soil Sci.54779791CrossRefGoogle Scholar
  49. Thorstenson, D.C., Pollock, D.W. 1989Gas transport in unsaturated zones: Multicomponent systems and the adequacy of Fick’s lawsWater Resour. Res.25477507Google Scholar
  50. Touma, J., Vachaud, G., Parlange, J.Y. 1984Air and water flow in a sealedponded vertical soil column: experiment and modelSoil Sci.137181187Google Scholar
  51. van Bochove, E., Bertrand, N., Caron, J. 1998In situ estimation of the gaseous nitrous oxide diffusion coefficient in a sandy loam soilSoil Sci. Soc. Am. J.6211781184Google Scholar
  52. van der Weerden, T.J., Sherlock, R.R., Williams, P.H., Cameron, K.C. 2000Effect of three contrasting onion (Allium cepa L.) production systems on nitrous oxide emissions from soilBiol. Fert. Soils31334342CrossRefGoogle Scholar
  53. Van Groenigen J.W., Georgius P.J., Van Kessel C., Hummelink W.J., Velthof G.L. and Zwart K.B. 2004. Subsoil 15N2O production in a sandy soil after application of 15N-fertilizer. Nutr. Cycl. Agroecosyst., this issue13–25.Google Scholar
  54. Velthof, G.L., Brader, A.B., Oenema, O. 1996Seasonal variations in nitrous oxide losses from managed grasslands in the NetherlandsPlant Soil181263274CrossRefGoogle Scholar
  55. Wang, Z., Feyen, J., Genuchten, M.T., Nielsen, D.R. 1998Air entrapment effects on infiltration rate and flow instabilityWater Resour. Res.34213222CrossRefGoogle Scholar
  56. Well, R.,  et al. 2002Methodological approaches for investigating the role of subsurface environments in the global N2O budgetHam, J. eds. Non-CO2 Greenhouse Gases: Scientific Understanding, Control Options and Policy AspectsMillpressRotterdam167178Proceedings of the Third International SymposiumMaastrichtThe NetherlandsGoogle Scholar
  57. Well, R., Myrold, D.D. 2002A proposed method for measuring subsoil denitrification in situSoil Sci. Soc. Am. J.66507518Google Scholar
  58. Yeomans, J.C., Bremner, J.M., McCarty, G.W. 1992Denitrification capacity and potential of subsurface soilsCommun. Soil Sci. Plant Anal.23919927Google Scholar
  59. Yoh, M., Toda, H., Kanda, K., Tsurata, H. 1997Diffusion analysis of N2O cycling in a fertilized soilNutr. Cycl. Agroecosyst.492933CrossRefGoogle Scholar
  60. Yu, K.W., Wang, Z.P., Chen, G.X. 1997Nitrous oxide and methane transport through rice plantsBiol. Fert. Soils24341343CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Soil Plant and Ecological Sciences DivisionLincoln UniversityNew Zealand
  2. 2.Department of Land Air and Water ResourcesUniversity of CaliforniaDavisUSA

Personalised recommendations