Skip to main content
Log in

A Review of the Movement and Fate of N2O in the Subsoil

  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Understanding the fate of N2O in the subsoil is important in accurately assessing the direct and indirect fluxes of N2O to the environment. The production, movement and ultimate fate of N2O in the subsoil are all poorly understood. Movement of N2O in the subsoil occurs predominantly via diffusion but convective fluxes can also occur. Diffusion gradients in the soil have been used to determine N2O surface fluxes with varying success. Infiltration of water into the soil may lead to entrapment, and the temporary storage of N2O, ebullition, or the transport of dissolved N2O in soil leachates. The reduction of N2O to N2 is potentially enhanced when N2O is entrapped. Few studies have examined the effect of infiltrating water on a previously known N2O concentration in the soil. Future studies are required to better establish the consumption and movement of N2O in the subsoil during water infiltration. This paper reviews past work on the movement and fate of N2O in the subsoil and makes suggestions for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • K. Addy D.Q. Kellogg A.J. Gold P.M. Groffman G. Ferendo C. Sawyer (2002) ArticleTitleIn situ push–pull method to determine ground water denitrification in Riparian Zones J. Environ. Qual. 31 1017–1024 Occurrence Handle12026069

    PubMed  Google Scholar 

  • M.S. Aulakh J.W. Doran A.R. Mosier (1992) ArticleTitleSoil denitrification: significancemeasurement and effects of management Adv. Soil Sci. 18 1–57

    Google Scholar 

  • B.C. Ball C.A. Glasbey E.A.G. Robertson (1994) ArticleTitleMeasurement of soil gas diffusivity in situ Eur. J. Soil Sci. 45 3–13

    Google Scholar 

  • R.F. Barr H. Watts (1972) ArticleTitleDiffusion of some organic and inorganic compounds in air J. Chem. Eng. Data 17 45–46 Occurrence Handle10.1021/je60052a014

    Article  Google Scholar 

  • J.M. Bremner (1997) ArticleTitleSources of nitrous oxide in soils Nutr. Cycl. Agroecosyst. 49 7–16 Occurrence Handle10.1023/A:1009798022569

    Article  Google Scholar 

  • S. Christensen (1985) ArticleTitleDenitrification in a sandy loam as influenced by climatic and soil conditions Tidsskr. Plantteavl. 89 351–365

    Google Scholar 

  • T.J. Clough S.C. Jarvis E.R. Dixon R.J. Stevens R.J. Laughlin D.J. Hatch (1999) ArticleTitleCarbon induced subsoil denitrification of 15N-labelled nitrate in 1 m deep soil columns Soil Biol. Biochem. 31 31–41 Occurrence Handle10.1016/S0038-0717(98)00097-2

    Article  Google Scholar 

  • T.J. Clough R.R. Sherlock K.C. Cameron R.J. Stevens R.J. Laughlin C. Muller (2001) ArticleTitleResolution of the 15N balance enigma? Aust. J. Soil Res. 39 1419–1431 Occurrence Handle10.1071/SR00092

    Article  Google Scholar 

  • T.J. Clough D.E. Rolston R.J. Stevens R.J. Laughlin (2003) ArticleTitleN2O and N2 gas fluxes, soil gas pressures, and ebullition events following irrigation of 15NO3 -labelled subsoils Aust. J. Soil Res. 41 401–420 Occurrence Handle10.1071/SR02104

    Article  Google Scholar 

  • P.J. Crutzen (1981) Atmospheric chemical processes of the oxides of nitrogen, including nitrous oxide C.C. Delwiche (Eds) Denitrification, Nitrification and Atmospheric Nitrous Oxide Wiley New York 17–44

    Google Scholar 

  • P.J. Culligan D.A. Barry J.Y. Parlange T.S. Steenhuis R. Haverkamp (2000) ArticleTitleInfiltration with controlled air escape Water Resour. Res. 36 781–785 Occurrence Handle10.1029/1999WR900351

    Article  Google Scholar 

  • L. Dendooven L. Duchateau J.M. Anderson (1996) ArticleTitleDenitrification as affected by the previous water-regime of the soil Soil Biol. Biochem. 28 239–245 Occurrence Handle10.1016/0038-0717(95)00132-8

    Article  Google Scholar 

  • R.M. Dixon D.R. Linden (1972) ArticleTitleSoil air pressure and water infiltration under border irrigation Soil Sci. Soc. Am. Proc. 36 948–953

    Google Scholar 

  • M.K. Firestone (1982) Biological denitrification F.J. Stevenson (Eds) Nitrogen in Agricultural Soils. Agronomy Monograph No. 22 American Society of Agronomy Soil Science Society of America Madison, WI 289–326

    Google Scholar 

  • M.K. Firestone M.S. Smith R.B. Firestone J.M. Tiedje (1979) ArticleTitleThe influence of nitratenitriteand oxygen on the consumption of the gaseous products of denitrification in soil Soil Sci. Soc. Am. J. 43 1140–1144

    Google Scholar 

  • P.M. Groffman A.J. Gold D.Q. Kellog K. Addy (2002) Mechanisms, rates and assessment of N2O in groundwaterriparian zones and rivers J. Ham Particlevan (Eds) et al. Non-CO2 Greenhouse Gases: Scientific Understanding, Control Options and Policy Aspects Millpress Rotterdam

    Google Scholar 

  • M. Heincke M. Kaupenjohann (1999) ArticleTitleEffects of soil solution on the dynamics of N2O emissions: a review Nutr. Cycl. Agroecosyst. 55 133–157 Occurrence Handle10.1023/A:1009842011599

    Article  Google Scholar 

  • C. Henault D. Cheneby K. Heurlier F. Garrido S. Perez J.C. Germon (2001) ArticleTitleLaboratory kinetics of soil denitrification are useful to discriminate soils with potentially high levels of N2O emission on the field scale Agronomie 21 713–723 Occurrence Handle10.1051/agro:2001165

    Article  Google Scholar 

  • L.S. Holt C.B. Christianson E.R. Austin J.C. Katayl (1988) ArticleTitleA laboratory technique for releasing and measuring denitrification products trapped in soil Soil Sci. Soc. Am. J. 52 1510–1511

    Google Scholar 

  • Y. Hosen K. Paisancharoen H. Tsuruta (2002) ArticleTitleEffects of deep application of urea on NO and N2O emissions from an Andisol Nutr. Cycl. Agroecosyst. 63 197–206 Occurrence Handle10.1023/A:1021150808320

    Article  Google Scholar 

  • S.C. Jarvis D.J. Hatch (1994) ArticleTitlePotential for denitrification at depth below long-term grass swards Soil Biol. Biochem. 26 1629–1636 Occurrence Handle10.1016/0038-0717(94)90315-8

    Article  Google Scholar 

  • D.B. Jaynes A.S. Rogowski (1983) ArticleTitleApplicability of Fick’s law to gas diffusion Soil Sci. Soc. Am. J. 47 425–430

    Google Scholar 

  • G.J. Jellick R.R. Schnabel (1986) ArticleTitleEvaluation of a field method for determining the gas diffusion coefficient in soils Soil Sci. Soc. Am. J. 50 18–23

    Google Scholar 

  • W.A. Jury J. Letey T. Collins (1982) ArticleTitleAnalysis of chamber methods used for measuring nitrous oxide production in the field Soil Sci. Soc. Am. J. 46 250–256

    Google Scholar 

  • W.A. Jury W.R. Gardner W.H. Gardner (1991) Soil Physics EditionNumber5 John Wiley & Sons Inc. New York

    Google Scholar 

  • C. Kammann L. Grünhage H.J. Jäger (2001) ArticleTitleA new sampling technique to monitor concentrations of CH4N2O and CO2 in air at well defined depths in soils with varied water potential Eur. J. Soil Sci. 52 297–303 Occurrence Handle10.1046/j.1365-2389.2001.00380.x

    Article  Google Scholar 

  • A. Kessavalou J.W. Doran A.R. Mosier R.A. Drijber (1998) ArticleTitleGreenhouse gas fluxes following tillage and wetting in a wheat–fallow cropping system J. Environ. Qual. 27 1105–1116

    Google Scholar 

  • C. Kroeze H.G. Faassen ParticleVan P.C. Ruiter ParticleDe (1989) ArticleTitlePotential denitrification rates in acid soils under pine forest Neth. J. Agric. Sci. 37 345–354

    Google Scholar 

  • S.H. Lai J.M. Tiedje A.E. Erickson (1976) ArticleTitleIn situ measurement of gas diffusion coefficient in soils Soil Sci. Soc. Am. J. 40 3–6

    Google Scholar 

  • J. Letey W.A. Jury A. Hadas N. Valoras (1980) ArticleTitleGas diffusion as a factor in laboratory incubation studies on denitrification J. Environ. Qual. 9 223–227

    Google Scholar 

  • C.W. Lindau W.H. Patrick R.D. DeLaune K.R. Reddy K.R. Bollich (1988) ArticleTitleEntrapment of nitrogen-15 dinitrogen during soil denitrification Soil Sci. Soc. Am. J. 52 538–540

    Google Scholar 

  • A.C. Lindau R.D. DeLaune (1991) ArticleTitleDinitrogen and nitrous oxide emission and entrapment in Spartina alternifloa saltmarsh soils following addition of N-15 labelled ammonium and nitrate Estaur. Coast. Shelf Sci. 32 161–172

    Google Scholar 

  • D.R. Linden R.M. Dixon (1973) ArticleTitleInfiltration and water table effects of soil air pressure under border irrigation Soil Sci. Soc. Am. Proc. 37 94–98

    Google Scholar 

  • M. Maljanen A. Liikanen J. Silvola P.J. Martikainen (2003) ArticleTitleMeasuring N2O emissions from organic soils by closed chamber or soil/snow N2O gradient methods Eur. J. Soil Sci. 54 625–631 Occurrence Handle10.1046/j.1365-2389.2003.00531.x

    Article  Google Scholar 

  • G.W. McCarty J.M. Bremner (1992) ArticleTitleAvailability of organic carbon for denitrification of nitrate in subsoils Biol. Fert. Soils 14 219–222 Occurrence Handle10.1007/BF00346064

    Article  Google Scholar 

  • L. Mei L. Yang D. Wang B. Yin J. Hu S. Yin (2004) ArticleTitleNitrous oxide production and consumption in serially diluted soil suspensions as related to in situ N2O emission in submerged soils Soil Biol. Biochem. 36 1057–1066 Occurrence Handle10.1016/j.soilbio.2004.03.001

    Article  Google Scholar 

  • A. Mosier C. Kroeze C. Nevison O. Oenema S. Seitzinger O. Vancleemput (1998) ArticleTitleClosing the global N2O budget – nitrous oxide emissions through the agricultural nitrogen cycle – OECD/IPCC/IEA phase II development of IPCC guidelines for national greenhouse gas inventory methodology Nutr. Cycl. Agroecosyst. 52 225–248 Occurrence Handle10.1023/A:1009740530221

    Article  Google Scholar 

  • C. Müller R.J. Stevens R.J. Laughlin H.J. Jäger (2004) ArticleTitleMicrobial processes and the site of N2O production in a temperate grassland soil Soil Biol. Biochem. 36 453–461 Occurrence Handle10.1016/j.soilbio.2003.08.027

    Article  Google Scholar 

  • P.E. Murray D.J. Hatch E.R. Dixon R.J. Stevens R.J. Laughlin S.C. Jarvis (2004) ArticleTitleDenitrification potential in a grassland subsoil: effect of carbon substrates Soil Biol. Biochem. 36 545–547 Occurrence Handle10.1016/j.soilbio.2003.10.020

    Article  Google Scholar 

  • D.T. Pritchard J.A. Currie (1982) ArticleTitleDiffusion coefficients of carbon monoxidenitrous oxideethylene and ethane in air and their measurement J. Soil Sci. 33 175–184

    Google Scholar 

  • P. Renault D. Mohrath J.C. Gaudu J.C. Fumanal (1998) ArticleTitleAir pressure fluctuations in a prairie soil Soil Sci. Soc. Am. J. 62 553–563

    Google Scholar 

  • Renault P., Khalil K., Dassonville F., Mohrath D., Lensi R., Chadoeuf J., Chenu C., Bidel L. and Lafolie F. 2002. Interactions between gas transport and biogeochemical processes: the effect of soil structure. 17th World Congress of Soil Science, Bangkok, Thailand, 14–20 August 2002. http://www.sfst.org/Proceedings/17WCSS_CD/pages/MainIndex.htm.

  • D.E. Rolston (1978) Application of gaseous-diffusion theory to the measurement of denitrification D.R. Nielsen J.G. MacDonald (Eds) Nitrogen in the EnvironmentNitrogen Behaviour in the FieldVol. 1 Academic Press New York 309–335

    Google Scholar 

  • D.E. Rolston (1986) Gas diffusivity A. Klute (Eds) Methods of Soil Analysis, Part 1 Monograph 9, American Society of Agronomy Madison, WI

    Google Scholar 

  • D.E. Rolston M. Fried D.A. Goldhamer (1976) ArticleTitleDenitrification measured directly from nitrogen and nitrous oxide gas fluxes Soil Sci. Soc. Am. J. 40 259–266

    Google Scholar 

  • D.E. Rolston R.D. Glauze G.L. Grundmann D.T. Louie (1991) ArticleTitleEvaluation of an in situ method for gas diffusivity in surface soils Soil Sci. Soc. Am. J. 55 1536–1542

    Google Scholar 

  • R. Russow S. Knappe H.U. Neue (2002) The N2O content of soil air at different depths as well as its related content in and transport by seepage in lysimeter soils J. Ham Particlevan (Eds) et al. Non-CO2 Greenhouse Gases: Scientific Understanding, Control Options and Policy Aspects Millpress Rotterdam 714

    Google Scholar 

  • K.A. Smith T. Ball F. Conen K.E. Dobbie J. Massheder A. Rey (2003) ArticleTitleExchange of greenhouse gases between soil and atmosphere: interactions of soil physical and biological processes Eur. J. Soil Sci. 54 779–791 Occurrence Handle10.1046/j.1351-0754.2003.0567.x

    Article  Google Scholar 

  • D.C. Thorstenson D.W. Pollock (1989) ArticleTitleGas transport in unsaturated zones: Multicomponent systems and the adequacy of Fick’s laws Water Resour. Res. 25 477–507

    Google Scholar 

  • J. Touma G. Vachaud J.Y. Parlange (1984) ArticleTitleAir and water flow in a sealedponded vertical soil column: experiment and model Soil Sci. 137 181–187

    Google Scholar 

  • E. van Bochove N. Bertrand J. Caron (1998) ArticleTitleIn situ estimation of the gaseous nitrous oxide diffusion coefficient in a sandy loam soil Soil Sci. Soc. Am. J. 62 1178–1184

    Google Scholar 

  • T.J. van der Weerden R.R. Sherlock P.H. Williams K.C. Cameron (2000) ArticleTitleEffect of three contrasting onion (Allium cepa L.) production systems on nitrous oxide emissions from soil Biol. Fert. Soils 31 334–342 Occurrence Handle10.1007/s003740050665

    Article  Google Scholar 

  • Van Groenigen J.W., Georgius P.J., Van Kessel C., Hummelink W.J., Velthof G.L. and Zwart K.B. 2004. Subsoil 15N2O production in a sandy soil after application of 15N-fertilizer. Nutr. Cycl. Agroecosyst., this issue13–25.

  • G.L. Velthof A.B. Brader O. Oenema (1996) ArticleTitleSeasonal variations in nitrous oxide losses from managed grasslands in the Netherlands Plant Soil 181 263–274 Occurrence Handle10.1007/BF00012061

    Article  Google Scholar 

  • Z. Wang J. Feyen M.T. Genuchten Particlevan D.R. Nielsen (1998) ArticleTitleAir entrapment effects on infiltration rate and flow instability Water Resour. Res. 34 213–222 Occurrence Handle10.1029/97WR02804

    Article  Google Scholar 

  • R. Well (2002) Methodological approaches for investigating the role of subsurface environments in the global N2O budget J. Ham Particlevan (Eds) et al. Non-CO2 Greenhouse Gases: Scientific Understanding, Control Options and Policy Aspects Millpress Rotterdam 167–178

    Google Scholar 

  • R. Well D.D. Myrold (2002) ArticleTitleA proposed method for measuring subsoil denitrification in situ Soil Sci. Soc. Am. J. 66 507–518

    Google Scholar 

  • J.C. Yeomans J.M. Bremner G.W. McCarty (1992) ArticleTitleDenitrification capacity and potential of subsurface soils Commun. Soil Sci. Plant Anal. 23 919–927

    Google Scholar 

  • M. Yoh H. Toda K. Kanda H. Tsurata (1997) ArticleTitleDiffusion analysis of N2O cycling in a fertilized soil Nutr. Cycl. Agroecosyst. 49 29–33 Occurrence Handle10.1023/A:1009757829417

    Article  Google Scholar 

  • K.W. Yu Z.P. Wang G.X. Chen (1997) ArticleTitleNitrous oxide and methane transport through rice plants Biol. Fert. Soils 24 341–343 Occurrence Handle10.1007/s003740050254

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.J. Clough.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clough, T., Sherlock, R. & Rolston, D. A Review of the Movement and Fate of N2O in the Subsoil. Nutr Cycl Agroecosyst 72, 3–11 (2005). https://doi.org/10.1007/s10705-004-7349-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-004-7349-z

Key words

Navigation