Prediction of fracture toughness and crack propagation of graphene via coupling of boundary element and nonlinear beam element

Abstract

A new approach of multi-scale simulation via coupling of boundary element and finite element is proposed to predict fracture toughness and crack propagation of a single layer graphene sheet. In this simulation a molecular dynamics-based nonlinear beam element is developed for the atomistic model near the crack tip, whereas a special two-dimensional boundary element is employed for the continuum model in the remaining field of the cracked specimen. The material and section properties required in the nonlinear beam element are estimated through the equivalence between the potential energy of molecular dynamics and the elastic strain energy of continuum mechanics. With the estimated properties of beam element, the material properties of boundary element are further estimated by applying loads on the specimen of graphene, which is formed by a hexagonal lattice of carbon atoms. Coupling the nonlinear beam elements by boundary elements with the local-global concept of multi-scale modeling, a vast of computational time can be saved. The accuracy of near tip stresses obtained in our simulation remedies the inaccuracy of linear elastic fracture mechanics, and can be used for the prediction of atomic bond-breaking, which leads to crack propagation. The associated critical load can then be applied in the continuum model for the cracked specimen to predict mode I and mode II fracture toughness of graphene. The obtained values are then verified by the published results measured or predicted by the other methods. By varying the size of cracks and orientation of applied loads, several interesting phenomena have been observed and discussed in this paper.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Aggarwal M (2018) Prediction of fracture properties of graphene by multiscaled finite element simulation. National Cheng-Kung University, Inst Aeronaut Astronaut

  2. Aliabadi MH, Wen PH (2010) Boundary element methods in engineering and sciences. Imperial College Press, London

    Google Scholar 

  3. Anderson TL (2005) Fracture mechanics—fundamentals and applications, 3rd edn. Taylor & Francis, Boca Raton

    Google Scholar 

  4. Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569

    CAS  Article  Google Scholar 

  5. Baykasoglu C, Mugan A (2012a) Coupled molecular/continuum mechanical modeling of graphene sheets. Phys E 45:151–161

    CAS  Article  Google Scholar 

  6. Baykasoglu C, Mugan A (2012b) Nonlinear fracture analysis of single-layer graphene sheets. Eng Fract Mech 96:241–50

    Article  Google Scholar 

  7. Belytschko T, Xiao SP, Schatz GC, Ruoff RS (2002) Atomistic simulations of nanotube fracture. Phys Rev B 65(23):235430

    Article  CAS  Google Scholar 

  8. Broek D (1982) Elementary engineering fracture mechanics. Springer, Dordrecht

    Google Scholar 

  9. Chabot V, Higgins D, Yu A, Xi Xiao, Chen Z, Zhang J (2014) A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ Sci 7(5):1564–1596

    CAS  Article  Google Scholar 

  10. Cheng YC, Wang HT, Zhu ZY, Zhu YH, Han Y, Zhang XX et al (2012) Strain activated edge reconstruction of graphene nanoribbons. Phys Rev B 85(7):073406

    Article  CAS  Google Scholar 

  11. Fan CW, Liu YY, Hwu C (2009) Finite element simulation for estimating the mechanical properties of multi-walled carbon nanotubes. Appl Phys A 95(3):819–831

    CAS  Article  Google Scholar 

  12. Geim AK, MacDonald AH (2007) Graphene: exploring carbon flatland. Phys Today 60(8):35–41

    CAS  Article  Google Scholar 

  13. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    CAS  Article  Google Scholar 

  14. Hwu C (2010) Anisotropic elastic plates. Springer, New York

    Google Scholar 

  15. Hwu C (2012) Matrix form near tip solutions of interface corners. Int J Fract 176(1):1–16

    Article  Google Scholar 

  16. Hwu C, Huang HY (2012) Investigation of the stress intensity factors for interface corners. Eng Fract Mech 93:204–224

    Article  Google Scholar 

  17. Hwu C, Kuo TL (2007) A unified definition for stress intensity factors of interface corners and cracks. Int J Solids Struct 44(18):6340–6359

    Article  Google Scholar 

  18. Hwu C, Liang YC (2000) Evaluation of stress concentration factors and stress intensity factors from remote boundary data. Int J Solids Struct 37(41):5957–5972

    Article  Google Scholar 

  19. Hwu C, Yen WJ (1991) Green’s functions of two-dimensional anisotropic plates containing an elliptic hole. Int J Solids Struct 27(15):1705–1719

    Google Scholar 

  20. Hwu C, Huang ST, Li CC (2017) Boundary-based finite element method for two-dimensional anisotropic elastic solids with multiple holes and cracks. Eng Anal Bound Elem 79:13–22

    Article  Google Scholar 

  21. Karihaloo BL (1982) On crack kinking and curving. Mech Mater 1:189–201

    Article  Google Scholar 

  22. Khare R, Mielke SL, Paci JT, Zhang S, Ballarini R, Schatz GC et al (2007) Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets. Phys Rev B 75(7):075412

    Article  CAS  Google Scholar 

  23. Le MQ, Batra RC (2013) Single-edge crack growth in graphene sheets under tension. Comput Mater Sci 69:381–388

    CAS  Article  Google Scholar 

  24. Lee C, Wei X, Kysar J, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    CAS  Article  Google Scholar 

  25. Lekawa-Raus A, Patmore J, Kurzepa L, Bulmer J, Koziol K (2014) Electrical properties of carbon nanotube based fibers and their future use in electrical wiring. Adv Funct Mater 24(24):3661–3682

    CAS  Article  Google Scholar 

  26. Li C, Chou TW (2003) A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Struct 40(12):2487–2499

    Article  Google Scholar 

  27. Lu Q, Gao W, Huang R (2011) Atomistic simulation and continuum modeling of graphene nanoribbons under uniaxial tension. Model Simul Mater Sci Eng 19:054006

    Article  CAS  Google Scholar 

  28. Monetta T, Acquesta A, Bellucci F (2015) Graphene/epoxy coating as multifunctional material for aircraft structures. Aerospace 2(3):423–434

    Article  Google Scholar 

  29. Moura M, Marder M (2013) Tearing of free-standing graphene. Phys Rev E 88:032405

    CAS  Article  Google Scholar 

  30. Neto AHC, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109–162

    Article  CAS  Google Scholar 

  31. Omeltchenko A, Yu J, Kalia RK, Vashishta P (1997) Crack front propagation and fracture in a graphite sheet: a molecular-dynamics study on parallel computers. Phys Rev Lett 78(13):2148–2151

    Article  Google Scholar 

  32. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52(1):5–25

    CAS  Article  Google Scholar 

  33. Shenderova OA, Brenner DW, Omeltchenko A, Su X, Yang LH (2000) Atomistic modeling of the fracture of polycrystalline diamond. Phys Rev B 61(6):3877–3888

    CAS  Article  Google Scholar 

  34. Shi PC, Guo JP, Liang X, Cheng S, Zheng H, Wang Y et al (2018) Large-scale production of high-quality graphene sheets by a non-electrified electrochemical exfoliation method. Carbon 126:507–513

    CAS  Article  Google Scholar 

  35. Siochi EJ (2014) Graphene in the sky and beyond. Nat Nanotechnol 9:745–747

    CAS  Article  Google Scholar 

  36. Stankovich S, Dikin DA, Dommett Geoffrey HB, Kohlhaas KM, Zimney EJ, Stach EA et al (2006) Graphene-based composite materials. Nature 442(7100):282–286

    CAS  Article  Google Scholar 

  37. Strang G, Fix GJ (1973) An analysis of the finite element method. Prentice-hall, Englewood Cliffs

    Google Scholar 

  38. Wang MC, Yan C, Ma L, Hu N, Chen MW (2012) Effect of defects on fracture strength of graphene sheets. Comput Mater Sci 54:236–239

    CAS  Article  Google Scholar 

  39. Xu Z (2009) Graphene nano-ribbons under tension. J Comput Thoer Nanosci 6:1–3

    CAS  Article  Google Scholar 

  40. Xu M, Tabarraei A, Paci JT, Oswald J, Belytschko T (2012) A coupled quantum/continuum mechanics study of graphene fracture. Int J Fract 173(2):163–173

    Article  Google Scholar 

  41. Yeh YK, Hwu C (2017) A modified molecular-continuum model for estimating the strength and fracture toughness of graphene and carbon nanotube. Eng Fract Mech 176:326–342

    Article  Google Scholar 

  42. Yeh YK, Hwu C (2019) Molecular-continuum model for the prediction of stiffness, strength and toughness of nanomaterials. Acta Mech 230(4):1451–1467

    Article  Google Scholar 

  43. Zhang B, Mei L, Xiao H (2012) Nanofracture in graphene under complex mechanical stresses. Appl Phys Lett 101(14):121915

    Article  CAS  Google Scholar 

  44. Zhang P, Ma L, Fan F, Zeng Z, Peng C, Loya PE et al (2014) Fracture toughness of graphene. Nat Commun 5:3782

    CAS  Article  Google Scholar 

  45. Zhao H, Min K, Aluru NR (2009) Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett 9(8):3012–3015

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Jin-Jia Yao for his running programs and plotting figures for the revised manuscript, and Ministry of Science and Technology, TAIWAN, R.O.C for support through Grants MOST 103-2221-E-006-161-MY3.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chyanbin Hwu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hwu, C., Aggarwal, M. & Lee, J. Prediction of fracture toughness and crack propagation of graphene via coupling of boundary element and nonlinear beam element. Int J Fract (2020). https://doi.org/10.1007/s10704-020-00453-3

Download citation

Keywords

  • Graphene
  • Fracture toughness
  • Crack propagation
  • Finite element method
  • Boundary element method