Dynamic stress corrosion cracking in silicon crystal

Abstract

We investigated, experimentally, the stress corrosion cracking (SCC) phenomenon in dynamic cracks propagating on two low energy cleavage systems (LECSs) of silicon crystal, (111)[\(11\,\bar{{2}}\)] and (110)[\(1\,\bar{{1}}\,0\)], under air and under Ar at atmospheric pressure. We used our high resolution Coefficients of Thermal Expansion Mismatch (CTEM) method to initiate and propagate the cracks. An important variable in this investigation was the gradient of the energy release rate (ERR) flow to the crack front for unit length of crack advance, \(dG_{0}/da\), denoted \(\varTheta \), in units of \(\hbox {J}/\hbox {m}^{2}/\hbox {mm}\). The CTEM method is capable of manipulating the value of \(\varTheta \). When loaded by low ERR gradient, e.g., when \(\varTheta <0.5\hbox { J}/\hbox {m}^{2}/\hbox {mm}\), in air, a complex and diverse SCC behavior was revealed; the cleavage energy strongly depends on \(\varTheta \), the environment and crystallographic structure. For higher \(\varTheta \), the cleavage energy is higher than that at vacuum and remains constant during crack propagation. We further show that at \(\varTheta \,0.5\hbox { J}/\hbox {m}^{2}/\hbox {mm}\), the SCC mechanisms vanish for both LECSs, and the cracks initiate and propagate at cleavage energy higher than that in vacuum, or the Griffith barrier of \(2\gamma _{\mathrm{s}}\), twice the free surface energy of the cleavage plane. This investigation suggests that the large scatter existing in the literature for the experimental cleavage energies of the current LECSs of silicon crystal and the still existing debate regarding the susceptibility of silicon crystal to SCC, is caused by the different value of \(\varTheta \) in the various past experiments. We further suggest that \(\varTheta \) should be stated when discussing the quasi static and dynamic cleavage energy of brittle crystals.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abaqus-Version (2011) 6.10 EF User Documentation, Dassault Systems

  2. Alsem DH, Pierron ON, Stach EA, Muhlstein CL, Ritchie RO (2007) Mechanisms for fatigue of micron-scale silicon structural films. Adv Eng Mater 9:15–30

    CAS  Article  Google Scholar 

  3. Atrash F, Sherman D (2011a) Evaluation of the thermal phonon emission in dynamic fracture of brittle crystals. Phys Rev B 84(22):224307

    Article  Google Scholar 

  4. Atrash F, Hashibon A, Gumsch P, Sherman D (2011b) Phonon emission induced dynamic fracture phenomena. Phys Rev Lett 106(8):085502

    CAS  Article  Google Scholar 

  5. Bhaduri SB, Wang FFY (1986) Fracture surface energy determination in 110 planes in silicon by the double torsion method. J Mater Sci 21:2489

    CAS  Article  Google Scholar 

  6. Chen CP, Leipold MH (1980) Fracture toughness of silicon. Am Ceram Soc Bull 59:469–472

    CAS  Google Scholar 

  7. Cramer T, Wanner A, Gumbsch P (1997) Crack velocities during dynamic fracture of glass and single crystalline silicon. Physica Status Solidi 164:R5–R6

    CAS  Article  Google Scholar 

  8. Cramer T, Wanner A, Gumbsch P (1999) Dynamic fracture of glass and single-crystalline silicon. Z Metallkd 90:675–685

    CAS  Google Scholar 

  9. Cramer T, Wanner A, Gumbsch P (2000) Energy dissipation and path instabilities in dynamic fracture of silicon single crystals. Phys Rev Lett 85(4):788–791

    CAS  Article  Google Scholar 

  10. Fitzgerald AM, Iyer RS, Dauskardt RH, Kenny TW (2002) Subcritical crack growth in single-crystal silicon using micromachined specimens. J Mater Res 17:683–692

    CAS  Article  Google Scholar 

  11. Freund LB (1998) Dynamic fracture mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  12. Gilman JJ (1960) Direct measurements of the surface energies of crystals. J Appl Mech 31:2208–2218

    CAS  Google Scholar 

  13. Gleizer A, Sherman D (2014a) The cleavage energy at initiation of (110) silicon. Int J Fract 187:1–14

    CAS  Article  Google Scholar 

  14. Gleizer A, Peralta G, Kermode JR, de-Vita A (2014b) Dissociative chemisorption of \(\text{ O }_{2}\) inducing stress corrosion cracking in silicon crystals. Phys Rev Lett 112:115501

    Article  Google Scholar 

  15. Griffith AA (1921) The phenomena of rupture and flow in solids. Phil Trans Royal Soc London A221:163–98

    Article  Google Scholar 

  16. Hauch JA, Holland DH, Marder MP, Swinney HL (1999) Dynamic fracture in single crystal silicon. Phys Rev Lett 82(19):3823–3826

    CAS  Article  Google Scholar 

  17. Hicks MA, Pickard AC (1982) A comparison of theoretical and experimental methods of calibrating the electrical potential drop technique for crack length determination. Int J Fract 20:91–101

    Article  Google Scholar 

  18. Holland D, Marder M (1998) Ideal brittle fracture of silicon studied with molecular dynamics. Phys Rev Lett 80(4):746–749

    CAS  Article  Google Scholar 

  19. Jaccodine J (1963) Surface energy of Germanium and Silicon. J Elec Soc 110:524–527

    CAS  Article  Google Scholar 

  20. Kahn H, Ballarini R, Bellante JJ, Heuer HA (2002) Fatigue failure in polysilicon not due to simple stress corrosion cracking. Science 298:1215–1218

    CAS  Google Scholar 

  21. Kermode JR, Gleizer A, Kovel G, Pastewka L, Csanyi G, Sherman D, de Vita A (2015) Low speed crack propagation via kink formation and advance on the silicon (110) cleavage plane. Phys Rev Lett 115:135501

    Article  Google Scholar 

  22. Messmer C, Bilello JC (1981) The surface energy of Si, GaAs, and GaP. J Appl Phys 52:4623

    CAS  Article  Google Scholar 

  23. Obreimoff JW (1930) The splitting strength of mica. Proc Royal Soc London A127:290–297

    Article  Google Scholar 

  24. Ogata S, Shimojo F, Kalia RK, Nakano A, Vashishta P (2004) Environmental effects of \(\text{ H }_{2}\text{ O }\) on fracture initiation in silicon: a hybrid electronic-density-functional/molecular-dynamics study. J Appl Phys 95:5316

    CAS  Article  Google Scholar 

  25. Orowan E (1933) Die erhöhte Festigkeit dünner Fäden, der Joffé-Effekt und verwandte Erscheinungen vom Standpunkt der Griffithschen Bruchtheorie. Z Phys 86:195–213

    Article  Google Scholar 

  26. Pérez R, Gumbsch P (2000) Directional anisotropy in the cleavage fracture of silicon. Phys Rev Lett 84:5347

    Article  Google Scholar 

  27. Ritchie RO, Schroeder V, Gilbert CJ (2000) Fracture, fatigue and environmentally-assisted failure of a Zr-based bulk amorphous metal. Intermetallics 8:469–475

    CAS  Article  Google Scholar 

  28. Shaheen-Mualim M, Sherman D (2018a) The dynamic cleavage energy of brittle crystals. Int J Eng Sci 129:111–128

    CAS  Article  Google Scholar 

  29. Shaheen-Mualim M, Sherman D (2018b) The effect of reflected stress wave on crack speed in silicon crystal. Eng Fract Mech. https://doi.org/10.1016/j.engfracmech.2018.10.022

    Article  Google Scholar 

  30. Sherman D, Gleizer A (2014) Evaluating the cleavage energy of brittle single crystals. Mater Perform Charact 3:1–25

    Google Scholar 

  31. St. John C (1975) The brittle-to-ductile transition in pre-cleaved silicon single crystals. Philos Mag 32:1193

    CAS  Article  Google Scholar 

  32. Wallner H (1939) Linienstrukturen an bruchflächen. Zeitschrift für Physik 114:368–378

    Article  Google Scholar 

  33. Wiederhorn SM (1967) Influence of water vapor on crack propagation in soda-lime glass. J Am Ceram Soc 50:407–414 g

    CAS  Article  Google Scholar 

  34. Wiederhorn SM (1968) Moisture assisted crack growth in ceramics. Int J Fract Mech 4:171–177

    Article  Google Scholar 

  35. Wiederhorn SM (1974) Subcritical crack growth in ceramics. In: Bradt RC et al (eds) Fracture mechanics of ceramics. Plenum Press, New York, pp 613–646

    Google Scholar 

  36. Wiederhorn SM, Bolz LH (1970) Stress corrosion and static fatigue of lass. J Am Ceram Soc 53:543–548

    CAS  Article  Google Scholar 

  37. Wong B, Holbrook RJ (1987) Microindentation for fracture and stress-corrosion cracking studies in single crystal Silicon. J Electrochem Soc 134:2254–2256

    CAS  Article  Google Scholar 

  38. Yang TC, Saraswat KC (2000) Effect of physical stress on the degradation of thin \(\text{ SiO }_{2}\) films under electrical stress. IEEE Trans Electron Dev 47:746–755

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the Israel Science Foundation (ISF) Grant No. 1575/15.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dov Sherman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A—The rotated stiffness tensor

Appendix A—The rotated stiffness tensor

{110}<110> cleavage system

The rotated coordinate system for this cleavage system

$$\begin{aligned} x'=[1\bar{{1}}0];\hbox { }y'=[110];\hbox { }z'=[001] \end{aligned}$$

The stiffness tensor obtained from the rotation is,

$$\begin{aligned}&C_{\left( {110} \right) \left[ {1\,\bar{{1}}\,0} \right] } \\&\ =\left[ {{\begin{array}{llllll} {\hbox { }\frac{\hbox {C}_{{11}} \hbox {+C}_{{12}} }{2}\hbox {+C}_{{44}} \hbox { }}&{} {\frac{\hbox {C}_{{11}} +\hbox {C}_{{12}} }{2}-\hbox {C}_{{44}} }&{} {\hbox {C}_{{12}} }&{} {\hbox {0}}&{} \hbox {0}&{} \hbox {0} \\ &{} {\frac{\hbox {C}_{{11}} \hbox {+C}_{{12}} }{2}\hbox {+C}_{{44}} }&{} {\hbox {C}_{{12}} }&{} \hbox {0}&{} \hbox {0}&{} \hbox {0} \\ &{} &{} {\hbox { C}_{{11}} }&{} {\hbox { 0}}&{} \hbox {0}&{} \hbox {0} \\ &{} &{} &{} {\hbox {C}_{{44}} }&{} \hbox {0}&{} \hbox {0} \\ &{} &{} &{} &{} {\hbox {C}_{{44}} }&{} 0 \\ &{} &{} &{} &{} &{} {\frac{\hbox {C}_{{11}} -\hbox {C}_{{12}} }{2}} \\ \end{array} }} \right] \end{aligned}$$

{111}<112> cleavage system

The rotated coordinate system for this cleavage system

$$\begin{aligned} x'=[11\bar{{2}}];y'=[111];z'=[\bar{{1}}10] \end{aligned}$$

The stiffness tensor obtained from the rotation is,

$$\begin{aligned} C_{(111)[11\bar{2}] }= \left[ {{\begin{array}{llllll} {\frac{C_{11} +C_{12} +2\hbox {C}_{{44}} }{2}}&{} {\frac{C_{11} +2C_{12} -2\hbox {C}_{{44}} }{3}}&{} {\frac{C_{11} +5C_{12} -2\hbox {C}_{{44}} }{6}}&{} {\hbox { 0}}&{} {0}&{} {\sqrt{{2}}\frac{C_{11} -C_{12} -2\hbox {C}_{{44}} }{6}} \\ &{} {\frac{C_{11} +2C_{12} +4\hbox {C}_{{44}} }{3}}&{} {\frac{C_{11} +2C_{12} -2\hbox {C}_{{44}} }{3}}&{} {0}&{} {0}&{} {0} \\ &{} &{} {\frac{C_{11} +C_{12} +2\hbox {C}_{{44}} }{2}}&{} {\hbox { 0}}&{} {0}&{} {-\sqrt{{2}}\frac{C_{11} -C_{12} -2\hbox {C}_{{44}} }{6}} \\ &{} &{} &{} {\frac{C_{11} -C_{12} +\hbox {C}_{{44}} }{3}}&{} {-\sqrt{{2}}\frac{C_{11} -C_{12} -2\hbox {C}_{{44}} }{6}}&{} {0} \\ &{} &{} &{} &{} {\frac{C_{11} -C_{12} +2\hbox {C}_{{44}} }{6}}&{} 0 \\ &{} &{} &{} &{} &{} {\frac{C_{11} -C_{12} +\hbox {C}_{{44}} }{3}} \\ \end{array} }} \right] \end{aligned}$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shaheen-Mualim, M., Gleizer, A. & Sherman, D. Dynamic stress corrosion cracking in silicon crystal. Int J Fract 219, 161–174 (2019). https://doi.org/10.1007/s10704-019-00387-5

Download citation