Skip to main content
Log in

Interfacial debonds of layered anisotropic materials using a quasi-static interface damage model with Coulomb friction

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A new quasi-static and energy based formulation of an interface damage model which includes Coulomb friction at the interface between anisotropic solids is provided. The interface traction-relative displacement response is based on an assumption of a thin adhesive layer whose behaviour is analogous to cohesive zone models. The damaged interface is considered, if exposed to a pressure, as a contact zone where Coulomb friction law is also taken into account. As the contacting solids are generally anisotropic, the friction may exhibit some anisotropic behaviour, too, which is included into the proposed model. The solution of the problem is sought numerically by a semi-implicit time-stepping procedure which uses recursive decoupled double minimisation in displacements and damage variables. The spatial discretisation is based on the symmetric Galerkin boundary-element method of a multidomain problem, where the interface variables are calculated by sequential quadratic programming, being a tool for resolving each partial minimisation in the proposed recursive scheme. Sample numerical examples demonstrate applicability of the described model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alizadeh F, Goldfarb D (2003) Second-order cone programming. Math Program Ser B 95:3–51

    Article  Google Scholar 

  • Banks-Sills L, Askenazi D (2000) A note on fracture criteria for interface fracture. Int J Fract 103:177–188

    Article  Google Scholar 

  • Barbero E (2008) Finite element analysis of composite materials. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Bartels S, Kružík M (2011) An efficient approach to the numerical solution of rate-independent problems with nonconvex energies. Multiscale Modeling Simul 9(3):1276–1300. https://doi.org/10.1137/110821718

    Article  Google Scholar 

  • Bažant Z, Planas J (1998) Fracture and size effect in concrete and other quasibrittle materials. CRC Press, Boca Raton

    Google Scholar 

  • Benzeggagh M, Kenane M (1996) Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos Sci Technol 56:439–449

    Article  Google Scholar 

  • Besson J, Cailletaud G, Chaboche J, Forest S (2010) Non-linear mechanics of materials. Springer, Dordrecht

    Book  Google Scholar 

  • Blázquez A, Mantič V, París F (2006) Application of BEM to generalized plane problems for anisotropic elastic materials in presence of contact. Eng Anal Bound Elem 30(6):489–502. https://doi.org/10.1016/j.enganabound.2005.07.006

    Article  Google Scholar 

  • Bonnet M (1995) Regularized direct and indirect symmetric variational BIE formulations for three-dimensional elasticity. Eng Anal Bound Elem 15:93–102

    Article  Google Scholar 

  • Bonnet M, Maier G, Polizzotto C (1998) Symmetric Galerkin boundary element method. Appl Mech Rev 15:669–704

    Article  Google Scholar 

  • Bouchala J, Dostál Z, Vodstrčil P (2013) Separable spherical constraints and the decrease of a quadratic function in the gradient projection step. J Optim Theory Appl 157:132–140

    Article  Google Scholar 

  • Campo M, Fernández J, Kuttler K (2009) An elastic-viscoplastic quasistatic contact problem: existence and uniqueness of a weak solution. Arch Ration Mech Anal 191:423

    Article  Google Scholar 

  • Carpinteri A (1989) Post-peak and post-bifurcation analysis of catastrophic softening behaviour (snap-back instability). Eng Fract Mech 32:265–278

    Article  Google Scholar 

  • Colli P, Visintin A (1990) On a class of doubly nonlinear evolution equations. Commun Partial Differ Equ 15(5):737–756. https://doi.org/10.1080/03605309908820706

    Article  Google Scholar 

  • Cordeiro S, Leonel E (2016) Cohesive crack propagation modelling in wood structures using BEM and the tangent operator technique. Eng Anal Bound Elem 64:111–121. https://doi.org/10.1016/j.enganabound.2015.11.013

    Article  Google Scholar 

  • Dávila C, Rose C, Camanho P (2009) A procedure for superposing linear cohesive laws to represent multiple damage mechanisms in the fracture of composites. Int J Fract 158(2):211–223. https://doi.org/10.1007/s10704-009-9366-z

    Article  Google Scholar 

  • Dávila C, Rose C, Iarve E (2013) Modeling fracture and complex crack networks in laminated composites. In: Mantič V (ed) Mathematical methods and models in composites. Imperial College Press, London, pp 297–347

    Chapter  Google Scholar 

  • Del Piero G, Raous M (2010) A unified model for adhesive interfaces with damage, viscosity, and friction. Eur J Mech A/Solids 29:496–507

    Article  Google Scholar 

  • Dostál Z (2009) Optimal Quadratic programming algorithms, Springer optimization and its applications, vol 23. Springer, Berlin

    Google Scholar 

  • Dostál Z, Kozubek T (2012) An optimal algorithm and superrelaxation for minimization of a quadratic function subject to separable convex constraints with applications. Math Program 135(1–2):195–220

    Article  Google Scholar 

  • Dostál Z, Kozubek T, Horyl P, Brzobohatý T, Makropoulos A (2010a) Scalable FETI algorithm for two dimensional multibody contact problems with friction. J Comput Appl Math 235:403–418

    Article  Google Scholar 

  • Dostál Z, Kozubek T, Vondrák V, Brzobohatý T, Makropoulos A (2010b) Scalable TFETI algorithm for the solution of multibody contact problems of elasticity. Int J Numer Meth Eng 82:1384–1405

    Google Scholar 

  • Eck C, Steinbach O, Wendland W (1999) A symmetric boundary element method for contact problems with friction. Math Comput Simul 50:43–61

    Article  Google Scholar 

  • Frémond M (1985) Dissipation dans l’adhérence des solides. CR Acad Sci Paris SérII 300:709–714

    Google Scholar 

  • Guiamatsia I, Nguyen G (2014) A thermodynamics-based cohesive model for interface debonding and friction. Int J Solids Struct 51(3–4):647–659. https://doi.org/10.1016/j.ijsolstr.2013.10.032

    Article  Google Scholar 

  • Gutkin R, Laffan M, Pinho S, Robinson P, Curtis P (2011) Modelling the R-curve effect and its specimen-dependence. Int J Solids Struct 48(11–12):1767–1777

    Article  Google Scholar 

  • Hamala M, Trnovská M (2013) NelineArne programovanie. EPOS, Bratislava, Slovakia

  • Han W, Shillor M, Sofonea M (2001) Variational and numerical analysis of a quasistatic viscoelastic problem with normal compliance, friction and damage. J Comput Appl Math 137:377–398

    Article  Google Scholar 

  • Hayashi T, Koguchi H (2015) Adhesive contact analysis for anisotropic materials considering surface stress and surface elasticity. Int J Solids Struct 53:138–147. https://doi.org/10.1016/j.ijsolstr.2014.10.006

    Article  Google Scholar 

  • Hjiaj M, Feng ZQ, De Saxcé G, Mróz Z (2004) On the modelling of complex anisotropic frictional contact laws. Int J Eng Sci 42(10):1013–1034. https://doi.org/10.1016/j.ijengsci.2003.10.004

    Article  Google Scholar 

  • Hutchinson J, Suo Z (1991) Mixed mode cracking in layered materials. Adv Appl Mech 29:63–191

    Article  Google Scholar 

  • Kikuchi N, Oden J (1988) Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM, Philadelphia

    Book  Google Scholar 

  • Kočvara M, Mielke A, Roubíček T (2006) A rate-independent approach to the delamination problem. Math Mech Solids 11:423–447

    Article  Google Scholar 

  • Kružík M, Panagiotopoulos C, Roubíček T (2015) Quasistatic adhesive contact delaminating in mixed mode and its numerical treatment. Math Mech Solids 20:582–599

    Article  Google Scholar 

  • Kšiňan J, Vodička R (2016) An SGBEM implementation of contact models coupling the interface damage and Coulomb friction in fibre-matrix composites. Eng Fract Mech 168:76–92

    Article  Google Scholar 

  • Kormaníková E, Kotrasová K (2011a) Elastic mechanical properties of fiber reinforced composite materials. Chemicke Listy 105(17):758–762

    Google Scholar 

  • Kormaníková E, Kotrasová K (2011b) Delamination of laminate plate under tearing load mode. MATEC Web of Conferences 107(00049). https://doi.org/10.1051/matecconf/201710700049

  • Lemaitre J, Desmorat R (2005) Engineering damage mechanics. Springer, Berlin

    Google Scholar 

  • Luciano R, Barbero E (1994) Formulas for the stiffness of composites with periodic microstructure. Int J Solids Struct 31(21):2933–2944

    Article  Google Scholar 

  • Mantič V (2008) Discussion on the reference length and mode mixity for a bimaterial interface. J Eng Mater Technol 130:045,501-1-2

    Google Scholar 

  • Mantič V, París F (1997) Symmetrical representation of stresses in the Stroh formalism and its application to a dislocation and a dislocation dipole in an anisotropic medium. J Elast 47:101–120

    Article  Google Scholar 

  • Mantič V, París F (1998) Integral kernels in the 2D somigliana displacement and stress identities for anisotropic materials. Comput Mech 22(1):77–87. https://doi.org/10.1007/s004660050341

    Article  Google Scholar 

  • Mantič V, París F (2004) Relation between SIF and ERR based measures of fracture mode mixity in interface cracks. Int J Fract 130:557–569

    Article  Google Scholar 

  • Maugis D (2000) Contact, adhesion and rupture of elastic solids. Springer, Berlin

    Book  Google Scholar 

  • Mielke A, Roubíček T (2015) Rate-independent systems—theory and application. Springer, Berlin

    Book  Google Scholar 

  • Mosco U (1967) A remark on a theorem of F. E. Browder. J Math Anal Appl 20:90–93

    Article  Google Scholar 

  • Nemat-Nasser S, Iwakuma T, Hejazi M (1981) On composites with periodic structure. Mech Mater 1:239–267

    Article  Google Scholar 

  • Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three dimensional crack propagation analysis. Int J Numer Methods Eng 44:1267–1283

    Article  Google Scholar 

  • Pabst S, Thomaszewski B, Strasser W (2009) Anisotropic friction for deformable surfaces and solids. In: SCA ’09 Proceedings of the 2009 ACM SIGGRAPH/eurographics symposium on computer animation, ACM New York, NY, USA, pp 149–154

  • Panagiotopoulos C, Mantič V, Roubíček T (2014) A simple and efficient BEM implementation of quasistatic linear visco-elasticity. Int J Solid Struct 51:2261–2271

    Article  Google Scholar 

  • Park K, Paulino G (2011) Cohesive zone models: a critical review of traction-separation relationships across fracture surfaces. Appl Mech Rev. https://doi.org/10.1115/1.4023110

    Google Scholar 

  • Pirc N, Schmidt F, Mongeau M, Bugarin F, Chinesta F (2008) Optimization of BEM-based cooling channels injection moulding using model reduction. Int J Mater Form 1(SUPPL. 1):1043–1046. https://doi.org/10.1007/s12289-008-0197-7

    Article  Google Scholar 

  • Raous M, Cangemi L, Cocu M (1999) A consistent model coupling adhesion, friction and unilateral contact. Comput Methods Appl Mech Eng 177(6):383–399

    Article  Google Scholar 

  • Rockafellar R (1970) Convex analysis. Princeton University Press, Princeton, New Jersey

    Book  Google Scholar 

  • Roubíček T (2013) Adhesive contact of visco-elastic bodies and defect measures arising by vanishing viscosity. SIAM J Math Anal 45(1):101–126. https://doi.org/10.1137/12088286X

    Article  Google Scholar 

  • Roubíček T, Kružík M, Zeman J (2013a) Delamination and adhesive contact models and their mathematical analysis and numerical treatment. In: Mantič V (ed) Mathematical methods and models in composites. Imperial College Press, London, pp 349–400

    Chapter  Google Scholar 

  • Roubíček T, Panagiotopoulos C, Mantič V (2013b) Quasistatic adhesive contact of visco-elastic bodies and its numerical treatment for very small viscosity. Zeitschrift Angew Math Mech 93:823–840

    Article  Google Scholar 

  • Rungamornrat J (2006) Analysis of 3D cracks in anisotropic multi-material domain with weakly singular SGBEM. Eng Anal Bound Elem 30(10):834–846. https://doi.org/10.1016/j.enganabound.2006.05.005

    Article  Google Scholar 

  • Rungamornrat J, Mear M (2008a) A weakly-singular SGBEM for analysis of cracks in 3D anisotropic media. Comput Methods Appl Mech Eng 197(49–50):4319–4332

    Article  Google Scholar 

  • Rungamornrat J, Mear M (2008b) Weakly-singular, weak-form integral equations for cracks in three-dimensional anisotropic media. Int J Solids Struct 45(5):1283–1301

    Article  Google Scholar 

  • Rungamornrat J, Mear M (2011) SGBEM–FEM coupling for analysis of cracks in 3D anisotropic media. Int J Numer Methods Eng 86(2):224–248. https://doi.org/10.1002/nme.3055

    Article  Google Scholar 

  • Sauter S, Schwab C (2010) Boundary element methods. Springer, Berlin

    Book  Google Scholar 

  • Sirtori S (1979) General stress analysis by means of integral equations and boundary elements. Meccanica 14:210–218

    Article  Google Scholar 

  • Sturm J (2002) Implementation of interior point methods for mixed semidefinite and second order cone optimization problems. Optim Methods Softw 17:1105–1154

    Article  Google Scholar 

  • Sutradhar A, Paulino G, Gray L (2008) The symmetric Galerkin boundary element method. Springer, Berlin

    Google Scholar 

  • Távara L, Mantič V, Graciani E, París F (2011) BEM analysis of crack onset and propagation along fiber–matrix interface under transverse tension using a linear elastic–brittle interface model. Eng Anal Bound Elem 35:207–222

    Article  Google Scholar 

  • Távara L, Mantič V, Salvadori A, Gray L, París F (2013) Cohesive-zone-model formulation and implementation using the symmetric Galerkin boundary element method for homogeneous solids. Comput Mech 51:535–551

    Article  Google Scholar 

  • Távara L, Mantič V, Graciani E, París F (2015) Modelling interfacial debonds in unidirectional fibre-reinforced composites under biaxial transverse loads. Int J Fract 195:1–38

    Article  Google Scholar 

  • Ting T (1996) Anisotropic elasticity. Theory and applications. Oxford University Press, Oxford

    Google Scholar 

  • Tran H, Mear M (2014) A weakly singular SGBEM for analysis of two-dimensional crack problems in multi-field media. Eng Anal Bound Elem 41:60–73. https://doi.org/10.1016/j.enganabound.2014.01.003

    Article  Google Scholar 

  • Tvergaard V, Hutchinson J (1992) The relation between crack growth resistance and fracture process parameters in elastic–plastic solids. J Mech Phys Solids 40(6):1377–1397. https://doi.org/10.1016/0022-5096(92)90020-3

    Article  Google Scholar 

  • Tworzydlo W, Cecot W, Oden J, Yew C (1998) Computational micro-and macroscopic models of contact and friction: formation, approach and applications. Wear 220:113–140

    Article  Google Scholar 

  • Valoroso N, Champaney L (2006) A damage-mechanics-based approach for modelling decohesion in adhesively bonded assemblies. Eng Fract Mech 73(18):2774–2801. https://doi.org/10.1016/j.engfracmech.2006.04.029

    Article  Google Scholar 

  • Vandellos T, Huchette C, Carrere N (2013) Proposition of a framework for the development of a cohesive zone model adapted to carbon-fiber reinforced plastic laminated composites. Compos Struct 105:199–206

    Article  Google Scholar 

  • Vodička R (2016) A quasi-static interface damage model with cohesive cracks: SQP–SGBEM implementation. Eng Anal Bound Elem 62:123–140

    Article  Google Scholar 

  • Vodička R, Kšiňan F (2018) A quasi-static interface damage model with frictional contact-applications to steel reinforced concrete structures. Int J Comput Methods Exp Meas 6(6):1043–1056

    Google Scholar 

  • Vodička R, Kšiňan J (2017) Interfacial debonds in unidirectional fibre-reinforced composites exposed to biaxial loads. Procedia Eng 190:433–440

    Article  Google Scholar 

  • Vodička R, Mantič V (2012) An SGBEM implementation of an energetic approach for mixed mode delamination. In: Prochazka P, Aliabadi M (eds) Advances in boundary element techniques XIII. Eastleigh, EC ltd., pp 319–324

    Google Scholar 

  • Vodička R, Mantič V (2017) An energy based formulation of a quasi-static interface damage model with a multilinear cohesive law. Discrete Contin DynSyst-S 10(6):1539–1561

    Article  Google Scholar 

  • Vodička R, Mantič V, París F (2006) On the removal of the non-uniqueness in the solution of elastostatic problems by symmetric Galerkin BEM. Int J Numer Methods Eng 66:1884–1912

    Article  Google Scholar 

  • Vodička R, Mantič V, París F (2007) Symmetric variational formulation of BIE for domain decomposition problems in elasticity—an SGBEM approach for nonconforming discretizations of curved interfaces. CMES Comput Model Eng 17(3):173–203

    Google Scholar 

  • Vodička R, Mantič V, París F (2011) Two variational formulations for elastic domain decomposition problems solved by SGBEM enforcing coupling conditions in a weak form. Eng Anal Bound Elem 35:148–155

    Article  Google Scholar 

  • Vodička R, Mantič V, Roubíček T (2014) Energetic versus maximally-dissipative local solutions of a quasi-static rate-independent mixed-mode delamination model. Meccanica 49(12):2933–2936

    Article  Google Scholar 

  • Vodička R, Mantič V, Roubíček T (2017) Quasistatic normal-compliance contact problem of visco-elastic bodies with Coulomb friction implemented by QP and SGBEM. J Comput Appl Math 315:249–272

    Article  Google Scholar 

  • Wriggers P (2006) Computational contact mechanics. Springer, Berlin

    Book  Google Scholar 

  • Zmitrowicz A (2006) Models of kinematics dependent anisotropic and heterogeneous friction. Int J Solids Struct 43:4407–4451

    Article  Google Scholar 

  • Zmitrowicz A (2010) Contact stresses: a short survey of models and methods of computations. Arch Appl Mech 80(12):1407–1428. https://doi.org/10.1007/s00419-009-0390-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Vodička.

Additional information

Authors acknowledge support from the Slovak Ministry of Education by the grants VEGA 1/0078/16 and VEGA 1/0477/15 and from the Slovak Research and Development Agency by the grant APVV-15-0486.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vodička, R., Kormaníková, E. & Kšiňan, F. Interfacial debonds of layered anisotropic materials using a quasi-static interface damage model with Coulomb friction. Int J Fract 211, 163–182 (2018). https://doi.org/10.1007/s10704-018-0281-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-018-0281-z

Keywords

Navigation