Advertisement

International Journal of Fracture

, Volume 211, Issue 1–2, pp 163–182 | Cite as

Interfacial debonds of layered anisotropic materials using a quasi-static interface damage model with Coulomb friction

  • Roman Vodička
  • Eva Kormaníková
  • Filip Kšiňan
Original Paper
  • 133 Downloads

Abstract

A new quasi-static and energy based formulation of an interface damage model which includes Coulomb friction at the interface between anisotropic solids is provided. The interface traction-relative displacement response is based on an assumption of a thin adhesive layer whose behaviour is analogous to cohesive zone models. The damaged interface is considered, if exposed to a pressure, as a contact zone where Coulomb friction law is also taken into account. As the contacting solids are generally anisotropic, the friction may exhibit some anisotropic behaviour, too, which is included into the proposed model. The solution of the problem is sought numerically by a semi-implicit time-stepping procedure which uses recursive decoupled double minimisation in displacements and damage variables. The spatial discretisation is based on the symmetric Galerkin boundary-element method of a multidomain problem, where the interface variables are calculated by sequential quadratic programming, being a tool for resolving each partial minimisation in the proposed recursive scheme. Sample numerical examples demonstrate applicability of the described model.

Keywords

Cohesive contact Coulomb friction Anisotropic friction Anisotropic elasticity Delamination Interface fracture Interface damage Mixed mode crack Symmetric Galerkin BEM Sequential quadratic programming 

References

  1. Alizadeh F, Goldfarb D (2003) Second-order cone programming. Math Program Ser B 95:3–51CrossRefGoogle Scholar
  2. Banks-Sills L, Askenazi D (2000) A note on fracture criteria for interface fracture. Int J Fract 103:177–188CrossRefGoogle Scholar
  3. Barbero E (2008) Finite element analysis of composite materials. CRC Press, Taylor & Francis Group, Boca RatonGoogle Scholar
  4. Bartels S, Kružík M (2011) An efficient approach to the numerical solution of rate-independent problems with nonconvex energies. Multiscale Modeling Simul 9(3):1276–1300.  https://doi.org/10.1137/110821718 CrossRefGoogle Scholar
  5. Bažant Z, Planas J (1998) Fracture and size effect in concrete and other quasibrittle materials. CRC Press, Boca RatonGoogle Scholar
  6. Benzeggagh M, Kenane M (1996) Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos Sci Technol 56:439–449CrossRefGoogle Scholar
  7. Besson J, Cailletaud G, Chaboche J, Forest S (2010) Non-linear mechanics of materials. Springer, DordrechtCrossRefGoogle Scholar
  8. Blázquez A, Mantič V, París F (2006) Application of BEM to generalized plane problems for anisotropic elastic materials in presence of contact. Eng Anal Bound Elem 30(6):489–502.  https://doi.org/10.1016/j.enganabound.2005.07.006 CrossRefGoogle Scholar
  9. Bonnet M (1995) Regularized direct and indirect symmetric variational BIE formulations for three-dimensional elasticity. Eng Anal Bound Elem 15:93–102CrossRefGoogle Scholar
  10. Bonnet M, Maier G, Polizzotto C (1998) Symmetric Galerkin boundary element method. Appl Mech Rev 15:669–704CrossRefGoogle Scholar
  11. Bouchala J, Dostál Z, Vodstrčil P (2013) Separable spherical constraints and the decrease of a quadratic function in the gradient projection step. J Optim Theory Appl 157:132–140CrossRefGoogle Scholar
  12. Campo M, Fernández J, Kuttler K (2009) An elastic-viscoplastic quasistatic contact problem: existence and uniqueness of a weak solution. Arch Ration Mech Anal 191:423CrossRefGoogle Scholar
  13. Carpinteri A (1989) Post-peak and post-bifurcation analysis of catastrophic softening behaviour (snap-back instability). Eng Fract Mech 32:265–278CrossRefGoogle Scholar
  14. Colli P, Visintin A (1990) On a class of doubly nonlinear evolution equations. Commun Partial Differ Equ 15(5):737–756.  https://doi.org/10.1080/03605309908820706 CrossRefGoogle Scholar
  15. Cordeiro S, Leonel E (2016) Cohesive crack propagation modelling in wood structures using BEM and the tangent operator technique. Eng Anal Bound Elem 64:111–121.  https://doi.org/10.1016/j.enganabound.2015.11.013 CrossRefGoogle Scholar
  16. Dávila C, Rose C, Camanho P (2009) A procedure for superposing linear cohesive laws to represent multiple damage mechanisms in the fracture of composites. Int J Fract 158(2):211–223.  https://doi.org/10.1007/s10704-009-9366-z CrossRefGoogle Scholar
  17. Dávila C, Rose C, Iarve E (2013) Modeling fracture and complex crack networks in laminated composites. In: Mantič V (ed) Mathematical methods and models in composites. Imperial College Press, London, pp 297–347CrossRefGoogle Scholar
  18. Del Piero G, Raous M (2010) A unified model for adhesive interfaces with damage, viscosity, and friction. Eur J Mech A/Solids 29:496–507CrossRefGoogle Scholar
  19. Dostál Z (2009) Optimal Quadratic programming algorithms, Springer optimization and its applications, vol 23. Springer, BerlinGoogle Scholar
  20. Dostál Z, Kozubek T (2012) An optimal algorithm and superrelaxation for minimization of a quadratic function subject to separable convex constraints with applications. Math Program 135(1–2):195–220CrossRefGoogle Scholar
  21. Dostál Z, Kozubek T, Horyl P, Brzobohatý T, Makropoulos A (2010a) Scalable FETI algorithm for two dimensional multibody contact problems with friction. J Comput Appl Math 235:403–418CrossRefGoogle Scholar
  22. Dostál Z, Kozubek T, Vondrák V, Brzobohatý T, Makropoulos A (2010b) Scalable TFETI algorithm for the solution of multibody contact problems of elasticity. Int J Numer Meth Eng 82:1384–1405Google Scholar
  23. Eck C, Steinbach O, Wendland W (1999) A symmetric boundary element method for contact problems with friction. Math Comput Simul 50:43–61CrossRefGoogle Scholar
  24. Frémond M (1985) Dissipation dans l’adhérence des solides. CR Acad Sci Paris SérII 300:709–714Google Scholar
  25. Guiamatsia I, Nguyen G (2014) A thermodynamics-based cohesive model for interface debonding and friction. Int J Solids Struct 51(3–4):647–659.  https://doi.org/10.1016/j.ijsolstr.2013.10.032 CrossRefGoogle Scholar
  26. Gutkin R, Laffan M, Pinho S, Robinson P, Curtis P (2011) Modelling the R-curve effect and its specimen-dependence. Int J Solids Struct 48(11–12):1767–1777CrossRefGoogle Scholar
  27. Hamala M, Trnovská M (2013) NelineArne programovanie. EPOS, Bratislava, SlovakiaGoogle Scholar
  28. Han W, Shillor M, Sofonea M (2001) Variational and numerical analysis of a quasistatic viscoelastic problem with normal compliance, friction and damage. J Comput Appl Math 137:377–398CrossRefGoogle Scholar
  29. Hayashi T, Koguchi H (2015) Adhesive contact analysis for anisotropic materials considering surface stress and surface elasticity. Int J Solids Struct 53:138–147.  https://doi.org/10.1016/j.ijsolstr.2014.10.006 CrossRefGoogle Scholar
  30. Hjiaj M, Feng ZQ, De Saxcé G, Mróz Z (2004) On the modelling of complex anisotropic frictional contact laws. Int J Eng Sci 42(10):1013–1034.  https://doi.org/10.1016/j.ijengsci.2003.10.004 CrossRefGoogle Scholar
  31. Hutchinson J, Suo Z (1991) Mixed mode cracking in layered materials. Adv Appl Mech 29:63–191CrossRefGoogle Scholar
  32. Kikuchi N, Oden J (1988) Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM, PhiladelphiaCrossRefGoogle Scholar
  33. Kočvara M, Mielke A, Roubíček T (2006) A rate-independent approach to the delamination problem. Math Mech Solids 11:423–447CrossRefGoogle Scholar
  34. Kružík M, Panagiotopoulos C, Roubíček T (2015) Quasistatic adhesive contact delaminating in mixed mode and its numerical treatment. Math Mech Solids 20:582–599CrossRefGoogle Scholar
  35. Kšiňan J, Vodička R (2016) An SGBEM implementation of contact models coupling the interface damage and Coulomb friction in fibre-matrix composites. Eng Fract Mech 168:76–92CrossRefGoogle Scholar
  36. Kormaníková E, Kotrasová K (2011a) Elastic mechanical properties of fiber reinforced composite materials. Chemicke Listy 105(17):758–762Google Scholar
  37. Kormaníková E, Kotrasová K (2011b) Delamination of laminate plate under tearing load mode. MATEC Web of Conferences 107(00049).  https://doi.org/10.1051/matecconf/201710700049
  38. Lemaitre J, Desmorat R (2005) Engineering damage mechanics. Springer, BerlinGoogle Scholar
  39. Luciano R, Barbero E (1994) Formulas for the stiffness of composites with periodic microstructure. Int J Solids Struct 31(21):2933–2944CrossRefGoogle Scholar
  40. Mantič V (2008) Discussion on the reference length and mode mixity for a bimaterial interface. J Eng Mater Technol 130:045,501-1-2Google Scholar
  41. Mantič V, París F (1997) Symmetrical representation of stresses in the Stroh formalism and its application to a dislocation and a dislocation dipole in an anisotropic medium. J Elast 47:101–120CrossRefGoogle Scholar
  42. Mantič V, París F (1998) Integral kernels in the 2D somigliana displacement and stress identities for anisotropic materials. Comput Mech 22(1):77–87.  https://doi.org/10.1007/s004660050341 CrossRefGoogle Scholar
  43. Mantič V, París F (2004) Relation between SIF and ERR based measures of fracture mode mixity in interface cracks. Int J Fract 130:557–569CrossRefGoogle Scholar
  44. Maugis D (2000) Contact, adhesion and rupture of elastic solids. Springer, BerlinCrossRefGoogle Scholar
  45. Mielke A, Roubíček T (2015) Rate-independent systems—theory and application. Springer, BerlinCrossRefGoogle Scholar
  46. Mosco U (1967) A remark on a theorem of F. E. Browder. J Math Anal Appl 20:90–93CrossRefGoogle Scholar
  47. Nemat-Nasser S, Iwakuma T, Hejazi M (1981) On composites with periodic structure. Mech Mater 1:239–267CrossRefGoogle Scholar
  48. Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three dimensional crack propagation analysis. Int J Numer Methods Eng 44:1267–1283CrossRefGoogle Scholar
  49. Pabst S, Thomaszewski B, Strasser W (2009) Anisotropic friction for deformable surfaces and solids. In: SCA ’09 Proceedings of the 2009 ACM SIGGRAPH/eurographics symposium on computer animation, ACM New York, NY, USA, pp 149–154Google Scholar
  50. Panagiotopoulos C, Mantič V, Roubíček T (2014) A simple and efficient BEM implementation of quasistatic linear visco-elasticity. Int J Solid Struct 51:2261–2271CrossRefGoogle Scholar
  51. Park K, Paulino G (2011) Cohesive zone models: a critical review of traction-separation relationships across fracture surfaces. Appl Mech Rev.  https://doi.org/10.1115/1.4023110 Google Scholar
  52. Pirc N, Schmidt F, Mongeau M, Bugarin F, Chinesta F (2008) Optimization of BEM-based cooling channels injection moulding using model reduction. Int J Mater Form 1(SUPPL. 1):1043–1046.  https://doi.org/10.1007/s12289-008-0197-7 CrossRefGoogle Scholar
  53. Raous M, Cangemi L, Cocu M (1999) A consistent model coupling adhesion, friction and unilateral contact. Comput Methods Appl Mech Eng 177(6):383–399CrossRefGoogle Scholar
  54. Rockafellar R (1970) Convex analysis. Princeton University Press, Princeton, New JerseyCrossRefGoogle Scholar
  55. Roubíček T (2013) Adhesive contact of visco-elastic bodies and defect measures arising by vanishing viscosity. SIAM J Math Anal 45(1):101–126.  https://doi.org/10.1137/12088286X CrossRefGoogle Scholar
  56. Roubíček T, Kružík M, Zeman J (2013a) Delamination and adhesive contact models and their mathematical analysis and numerical treatment. In: Mantič V (ed) Mathematical methods and models in composites. Imperial College Press, London, pp 349–400CrossRefGoogle Scholar
  57. Roubíček T, Panagiotopoulos C, Mantič V (2013b) Quasistatic adhesive contact of visco-elastic bodies and its numerical treatment for very small viscosity. Zeitschrift Angew Math Mech 93:823–840CrossRefGoogle Scholar
  58. Rungamornrat J (2006) Analysis of 3D cracks in anisotropic multi-material domain with weakly singular SGBEM. Eng Anal Bound Elem 30(10):834–846.  https://doi.org/10.1016/j.enganabound.2006.05.005 CrossRefGoogle Scholar
  59. Rungamornrat J, Mear M (2008a) A weakly-singular SGBEM for analysis of cracks in 3D anisotropic media. Comput Methods Appl Mech Eng 197(49–50):4319–4332CrossRefGoogle Scholar
  60. Rungamornrat J, Mear M (2008b) Weakly-singular, weak-form integral equations for cracks in three-dimensional anisotropic media. Int J Solids Struct 45(5):1283–1301CrossRefGoogle Scholar
  61. Rungamornrat J, Mear M (2011) SGBEM–FEM coupling for analysis of cracks in 3D anisotropic media. Int J Numer Methods Eng 86(2):224–248.  https://doi.org/10.1002/nme.3055 CrossRefGoogle Scholar
  62. Sauter S, Schwab C (2010) Boundary element methods. Springer, BerlinCrossRefGoogle Scholar
  63. Sirtori S (1979) General stress analysis by means of integral equations and boundary elements. Meccanica 14:210–218CrossRefGoogle Scholar
  64. Sturm J (2002) Implementation of interior point methods for mixed semidefinite and second order cone optimization problems. Optim Methods Softw 17:1105–1154CrossRefGoogle Scholar
  65. Sutradhar A, Paulino G, Gray L (2008) The symmetric Galerkin boundary element method. Springer, BerlinGoogle Scholar
  66. Távara L, Mantič V, Graciani E, París F (2011) BEM analysis of crack onset and propagation along fiber–matrix interface under transverse tension using a linear elastic–brittle interface model. Eng Anal Bound Elem 35:207–222CrossRefGoogle Scholar
  67. Távara L, Mantič V, Salvadori A, Gray L, París F (2013) Cohesive-zone-model formulation and implementation using the symmetric Galerkin boundary element method for homogeneous solids. Comput Mech 51:535–551CrossRefGoogle Scholar
  68. Távara L, Mantič V, Graciani E, París F (2015) Modelling interfacial debonds in unidirectional fibre-reinforced composites under biaxial transverse loads. Int J Fract 195:1–38CrossRefGoogle Scholar
  69. Ting T (1996) Anisotropic elasticity. Theory and applications. Oxford University Press, OxfordGoogle Scholar
  70. Tran H, Mear M (2014) A weakly singular SGBEM for analysis of two-dimensional crack problems in multi-field media. Eng Anal Bound Elem 41:60–73.  https://doi.org/10.1016/j.enganabound.2014.01.003 CrossRefGoogle Scholar
  71. Tvergaard V, Hutchinson J (1992) The relation between crack growth resistance and fracture process parameters in elastic–plastic solids. J Mech Phys Solids 40(6):1377–1397.  https://doi.org/10.1016/0022-5096(92)90020-3 CrossRefGoogle Scholar
  72. Tworzydlo W, Cecot W, Oden J, Yew C (1998) Computational micro-and macroscopic models of contact and friction: formation, approach and applications. Wear 220:113–140CrossRefGoogle Scholar
  73. Valoroso N, Champaney L (2006) A damage-mechanics-based approach for modelling decohesion in adhesively bonded assemblies. Eng Fract Mech 73(18):2774–2801.  https://doi.org/10.1016/j.engfracmech.2006.04.029 CrossRefGoogle Scholar
  74. Vandellos T, Huchette C, Carrere N (2013) Proposition of a framework for the development of a cohesive zone model adapted to carbon-fiber reinforced plastic laminated composites. Compos Struct 105:199–206CrossRefGoogle Scholar
  75. Vodička R (2016) A quasi-static interface damage model with cohesive cracks: SQP–SGBEM implementation. Eng Anal Bound Elem 62:123–140CrossRefGoogle Scholar
  76. Vodička R, Kšiňan F (2018) A quasi-static interface damage model with frictional contact-applications to steel reinforced concrete structures. Int J Comput Methods Exp Meas 6(6):1043–1056Google Scholar
  77. Vodička R, Kšiňan J (2017) Interfacial debonds in unidirectional fibre-reinforced composites exposed to biaxial loads. Procedia Eng 190:433–440CrossRefGoogle Scholar
  78. Vodička R, Mantič V (2012) An SGBEM implementation of an energetic approach for mixed mode delamination. In: Prochazka P, Aliabadi M (eds) Advances in boundary element techniques XIII. Eastleigh, EC ltd., pp 319–324Google Scholar
  79. Vodička R, Mantič V (2017) An energy based formulation of a quasi-static interface damage model with a multilinear cohesive law. Discrete Contin DynSyst-S 10(6):1539–1561CrossRefGoogle Scholar
  80. Vodička R, Mantič V, París F (2006) On the removal of the non-uniqueness in the solution of elastostatic problems by symmetric Galerkin BEM. Int J Numer Methods Eng 66:1884–1912CrossRefGoogle Scholar
  81. Vodička R, Mantič V, París F (2007) Symmetric variational formulation of BIE for domain decomposition problems in elasticity—an SGBEM approach for nonconforming discretizations of curved interfaces. CMES Comput Model Eng 17(3):173–203Google Scholar
  82. Vodička R, Mantič V, París F (2011) Two variational formulations for elastic domain decomposition problems solved by SGBEM enforcing coupling conditions in a weak form. Eng Anal Bound Elem 35:148–155CrossRefGoogle Scholar
  83. Vodička R, Mantič V, Roubíček T (2014) Energetic versus maximally-dissipative local solutions of a quasi-static rate-independent mixed-mode delamination model. Meccanica 49(12):2933–2936CrossRefGoogle Scholar
  84. Vodička R, Mantič V, Roubíček T (2017) Quasistatic normal-compliance contact problem of visco-elastic bodies with Coulomb friction implemented by QP and SGBEM. J Comput Appl Math 315:249–272CrossRefGoogle Scholar
  85. Wriggers P (2006) Computational contact mechanics. Springer, BerlinCrossRefGoogle Scholar
  86. Zmitrowicz A (2006) Models of kinematics dependent anisotropic and heterogeneous friction. Int J Solids Struct 43:4407–4451CrossRefGoogle Scholar
  87. Zmitrowicz A (2010) Contact stresses: a short survey of models and methods of computations. Arch Appl Mech 80(12):1407–1428.  https://doi.org/10.1007/s00419-009-0390-2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Civil Engineering FacultyTechnical University of KošiceKošiceSlovakia

Personalised recommendations