Skip to main content
Log in

Gradient piezoelectricity for cracks under an impact load

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The flexoelectric effect on elastic waves is investigated in nano-sized cracked structures. The strain gradients are considered in the constitutive equations of a piezoelectric solid for electric displacements and the higher-order stress tensor. The governing equations with the corresponding boundary conditions are derived from the variational principle. The finite element method (FEM) is developed from the principle of virtual work. It is equivalent to the weak-form of derived governing equations in gradient elasticity. The computational method can be applied to analyze general 2D boundary value problems in size-dependent piezoelectric elastic solids with cracks under a dynamic load. The FEM formulation is implemented for strain-gradient piezoelectricity under a dynamic load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aifantis E (1984) On the microstructural origin of certain inelastic models. ASME J Eng Mater Technol 106:326–330

    Article  Google Scholar 

  • Altan S, Aifantis E (1992) On the structure of the mode III crack-tip in gradient elasticity. Scripta Metall Mater 26:319–324

    Article  Google Scholar 

  • Aravas N, Giannakopoulos AE (2009) Plane asymptotic crack-tip solutions in gradient elasticity. Int J Solids Struct 46:4478–4503

    Article  Google Scholar 

  • Argyris JH, Fried I, Scharpf DW (1968) The tuba family of plate elements for the matrix displacement method. Aeronaut J 72:701–709

    Google Scholar 

  • Askes H, Aifantis EC (2011) Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures. Int J Solids Struct 48:1962–1990

    Article  Google Scholar 

  • Baskaran S, He X, Chen Q, Fu JF (2011) Experimental studies on the direct flexoelectric effect in alpha-phase polyvinylidene fluoride films. Appl Phys Lett 98:242901

    Article  Google Scholar 

  • Buhlmann S, Dwir B, Baborowski J, Muralt P (2002) Size effects in mesiscopic epitaxial ferroelectric structures: increase of piezoelectric response with decreasing feature-size. Appl Phys Lett 80:3195–3197

    Article  Google Scholar 

  • Catalan G, Lubk A, Vlooswijk AHG, Snoeck E, Magen C, Janssens A, Rispens G, Rijnders G, Blank DHA, Noheda B (2011) Flexoelectric rotation of polarization in ferroelectric thin films. Nat Mater 10:963–967

    Article  Google Scholar 

  • Cross LE (2006) Flexoelectric effects: charge separation in insulating solids subjected to elastic strain gradients. J Mater Sci 41:53–63

    Article  Google Scholar 

  • Exadaktylos G (1998) Gradient elasticity with surface energy: mode-I crack problem. Int J Solids Struct 35:421–456

    Article  Google Scholar 

  • Exadaktylos G, Vardoulakis I, Aifantis E (1996) Cracks in gradient elastic bodies with surface energy. Int J Fract 79:107–119

    Article  Google Scholar 

  • Fannjiang AC, Chan YS, Paulino GH (2002) Strain gradient elasticity for antiplane shear cracks: a hypersingular integrodifferential equation approach. SIAM J Appl Math 62:1066–1091

    Article  Google Scholar 

  • Garcia-Sanchez F, Zhang Ch, Sladek J, Sladek V (2007) 2-D transient dynamic crack analysis in piezoelectric solids. Comput Mater Sci 39:179–186

    Article  Google Scholar 

  • Georgiadis HG, Grentzelou CG (2006) Energy theorems and the J integral in dipolar gradient elasticity. Int J Solids Struct 43:5690–5712

    Article  Google Scholar 

  • Gitman I, Askes H, Kuhl E, Aifantis E (2010) Stress concentrations in fractured compact bone simulated with a special class of anisotropic gradient elasticity. Int J Solids Struct 47:1099–1107

    Article  Google Scholar 

  • Harden J, Mbanga B, Eber N, Fodor-Csorba K, Sprunt S, Gleeson JT, Jakli A (2006) Giant flexoelectricity of bent-core nematic liquid crystals. Phys Rev Lett 97:157802

    Article  Google Scholar 

  • Houbolt JC (1950) A recurrence matrix solution for the dynamic response of elastic aircraft. J Aeronaut Sci 17:371–376

    Google Scholar 

  • Hu SL, Shen SP (2009) Electric field gradient theory with surface effect for nano-dielectrics. CMC Comput Mater Contin 13:63–87

    Google Scholar 

  • Karlis GF, Tsinopoulos SV, Polyzos D, Beskos DE (2007) Boundary element analysis of mode I and mixed mode (I and II) crack problems of 2-D gradient elasticity. Comput Methods Appl Mech Eng 196:5092–5103

    Article  Google Scholar 

  • Kogan ShM (1964) Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Sov Phys Solid State 5:2069–2070

    Google Scholar 

  • Kuna M (2006) Finite element analyses of cracks in piezoelectric structures—a survey. Arch Appl Mech 76:725–745

    Article  Google Scholar 

  • Kuna M (2010) Fracture mechanics of piezoelectric materials—where are we right now? Eng Fract Mech 77:309–326

    Article  Google Scholar 

  • Lam DCC, Yang F, Wang J (2004) Size-dependent fracture and higher order J-integral for solids characterized by strain gradient elasticity. Int J Fract 126:385–398

    Article  Google Scholar 

  • Ma LH, Ke LL, Wang YZ, Wang YS (2017) Wave propagation in magneto-electro-elastic nanobeams via two nonlocal beam models. Phys E 86:253–261

    Article  Google Scholar 

  • Mao S, Purohit PK (2015) Defects in flexoelectric solids. J Mech Phys Solids 84:95–115

    Article  Google Scholar 

  • Mao S, Purohit PK (2014) Insights into flexoelectric solids from strain-gradient elasticity. J Appl Mech Trans ASME 81:081004

    Article  Google Scholar 

  • Mao S, Purohit PK, Aravas N (2016) Mixed finite-element formulations in piezoelectricity and flexoelectricity. Proc R Soc A Math Phys Sci 472:20150879

    Article  Google Scholar 

  • Maranganti R, Sharma P (2007) A novel atomistic approach to determine strain-gradient elasticity constants: tabulation and comparison for various metals, semiconductors, silica, polymers and the (ir) relevance for nanotechnologies. J Mech Phys Solids 55:1823–1852

    Article  Google Scholar 

  • Maugin GA (1980) The method of virtual power in continuum mechanics: applications to coupled fields. Acta Mech 35:1–80

    Article  Google Scholar 

  • McMeeking RM (1999) Crack tip energy release rate for a piezoelectric compact tension specimen. Eng Fract Mech 64:217–244

    Article  Google Scholar 

  • Metrikine A, Askes H (2006) An isotropic dynamically consistent gradient elasticity model derived from a 2D lattice. Philos Mag 86:3259–3286

    Article  Google Scholar 

  • Meyer RB (1969) Piezoelectric effects in liquid crystals. Phys Rev Lett 22:918–921

    Article  Google Scholar 

  • Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16:51–78

    Article  Google Scholar 

  • Sharma P, Maranganti R, Sharma ND (2006) Electromechanical coupling in nanopiezoelectric materials due to nanoscale nonlocal size effects: Green function solution and embedded inclustions. Phys Rev B 74:014110

    Article  Google Scholar 

  • Shen SP, Hu SL (2010) A theory of flexoelectricity with surface effect for elastic dielectrics. J Mech Phys Solids 58:665–677

    Article  Google Scholar 

  • Shi MX, Huang Y, Hwang KC (2000) Fracture in a higher-order elastic continuum. J Mech Phys Solids 48:2513–2538

    Article  Google Scholar 

  • Shvartsman VV, Emelyanov AY, Kholkin AL, Safari A (2002) Local hysteresis and grain size effects in Pb)Mg1/3Nb2/3)O-SbTiO3. Appl Phys Lett 81:117–119

    Article  Google Scholar 

  • Sladek J, Sladek V, Zhang Ch, Solek P, Starek L (2007a) Fracture analyses in continuously nonhomogeneous piezoelectric solids by the MLPG. CMES Comput Model Eng Sci 19:247–262

    Google Scholar 

  • Sladek J, Sladek V, Zhang Ch (2007b) Dynamic crack analysis in functionally graded piezoelectric solids by meshless local Petrov–Galerkin method. Key Eng Mater 348–349:149–152

    Article  Google Scholar 

  • Sladek J, Sladek V, Zhang Ch, Solek P, Pan E (2007c) Evaluation of fracture parameters in continuously nonhomogeneous piezoelectric solids. Int J Fract 145:313–326

    Article  Google Scholar 

  • Sladek J, Sladek V, Stanak P, Zhang Ch, Tan CL (2017) Fracture mechanics analysis of size-dependent piezoelectric solids. Int J Solids Struct 113:1–9

    Article  Google Scholar 

  • Thai HT, Vo TP, Nguyen TK, Kim SE (2017) A review of continuum mechanics models for size-dependent analysis of beams and plates. Compos Struct 177:196–219. https://doi.org/10.1016/j.compstruct.2017.06.040

    Article  Google Scholar 

  • Vardoulakis I, Exadaktylos G, Aifantis E (1996) Gradient elasticity with surface energy: mode-III crack problem. Int J Solids Struct 33:4531–4559

    Article  Google Scholar 

  • Yaghoubi ST, Mousavi SM, Paavola J (2017) Buckling of centrosymmetric anisotropic beam structures within strain gradient elasticity. Int J Solids Struct 109:84–92

    Article  Google Scholar 

  • Yang J, Guo S (2005) On using strain gradient theories in the analysis of cracks. Int J Fract 133:L19–L22

    Article  Google Scholar 

  • Yudin PV, Tagantsev AK (2013) Fundamentals of flexoelectricity in solids. Nanotechnology 24:432001

    Article  Google Scholar 

  • Wünsche M, Garcia-Sanchez F, Saez A, Zhang Ch (2010) A 2D time-domain collocation-Galerkin BEM for dynamic crack analysis in piezoelectric solids. Eng Anal Bound Elem 34:377–387

    Article  Google Scholar 

  • Wünsche M, Zhang Ch, Garcia-Sanchez F, Saez A, Sladek J, Sladek V (2011) Dynamic crack analysis in piezoelectric solids with nonlinear electrical and mechanical boundary conditions by a time-domain BEM. Comput Methods Appl Mech Eng 200:2848–2858

    Article  Google Scholar 

  • Zhu W, Fu JY, Li N, Cross LE (2006) Piezoelectric composite based on the enhanced flexoelectric effects. Appl Phys Lett 89:192904

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support by the Slovak Science and Technology Assistance Agency registered under number APVV-14-0216, VEGA 1/0145/17 and the Slovak Academy of Sciences Project (SASPRO) 0106/01/01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Sladek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sladek, J., Sladek, V., Wünsche, M. et al. Gradient piezoelectricity for cracks under an impact load. Int J Fract 210, 95–111 (2018). https://doi.org/10.1007/s10704-018-0264-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-018-0264-0

Keywords

Navigation