Advertisement

International Journal of Fracture

, Volume 209, Issue 1–2, pp 203–222 | Cite as

Elastic vortices and thermally-driven cracks in brittle materials with peridynamics

  • Zhanping Xu
  • Guanfeng Zhang
  • Ziguang Chen
  • Florin Bobaru
Original Paper

Abstract

Instabilities in thermally-driven crack growth in thin glass plates have been observed in experiments that slowly immerse a hot, pre-notched glass slide into a cold bath. We show that a nonlocal model of thermomechanical brittle fracture with minimal input parameters can predict the entire phase diagram of fracture measured in experiments for the low immersion speed regime. Geometrical restrictions to crack growth commonly found in other approaches are absent here. We discuss a method for determining the appropriate size of the peridynamic horizon based on a data point around a separating line between crack-type zones in the experimental phase diagram. Once the nonlocal size is smaller than the length-scale introduced by the thermal gradient, the computational results show that no fracture criterion is needed beyond Griffith’s criterion to capture the observed instabilities. The combination of thermal gradients and competing contraction forces on the two sides of the crack are behind the observed crack path instabilities. Elastic (velocity) vortices of material points show how and why the cracks develop along the observed paths. Our results demonstrate that thermally-driven fracture in brittle materials can be predicted with accuracy. We anticipate that this model will lead to design protocols for controlled fracture in brittle materials relevant in materials science and advanced manufacturing.

Keywords

Peridynamics Crack growth Thermally-driven cracks Thermoelasticity Elastic vortices Quenched glass 

Notes

Acknowledgements

This work has been supported in part by grants from the AFOSR MURI Center for Material Failure Prediction Through Peridynamics, Grant Number FA9550-14-1-0073 (Program Managers Drs. James Fillerup, Ali Sayir, David Stargel, and Fariba Fahroo), and from the ONR Award #N00014-16-1-2173 (Program Manager William Nickerson). This work was completed utilizing the Holland Computing Center of the University of Nebraska, which receives support from the Nebraska Research Initiative.

Supplementary material

Supplementary material 1 (mp4 3217 KB)

Supplementary material 2 (mp4 3991 KB)

Supplementary material 3 (mp4 5342 KB)

Supplementary material 4 (mp4 3595 KB)

Supplementary material 5 (mp4 3973 KB)

Supplementary material 6 (mp4 10352 KB)

Supplementary material 7 (mp4 12690 KB)

Supplementary material 8 (mp4 12842 KB)

Supplementary material 9 (mp4 20691 KB)

Supplementary material 10 (mp4 12946 KB)

Supplementary material 11 (mp4 13611 KB)

References

  1. Bobaru F, Duangpanya M (2010) The peridynamic formulation for transient heat conduction. Int J Heat Mass Transf 53:4047–4059.  https://doi.org/10.1016/j.ijheatmasstransfer.2010.05.024 CrossRefGoogle Scholar
  2. Bobaru F, Duangpanya M (2012) A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities. J Comput Phys 231:2764–2785.  https://doi.org/10.1016/j.jcp.2011.12.017 CrossRefGoogle Scholar
  3. Bobaru F, Hu W (2012) The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials. Int J Fract 176:215–222.  https://doi.org/10.1007/s10704-012-9725-z CrossRefGoogle Scholar
  4. Bobaru F, Zhang G (2015) Why do cracks branch? A peridynamic investigation of dynamic brittle fracture. Int J Fract 196:59–98.  https://doi.org/10.1007/s10704-015-0056-8 CrossRefGoogle Scholar
  5. Bobaru F, Zhang G (2016) Crack branching in dynamic brittle fracture. In: Bobaru F, Foster JT, Geubelle PH, Silling SA (eds) Handbook of peridynamic modeling. CRC Press, Taylor and Francis Group, pp 245–316Google Scholar
  6. Bouchbinder E, Hentschel HGE, Procaccia I (2003) Dynamical instabilities of quasistatic crack propagation under thermal stress. Phys Rev E Stat Nonlinear Soft Matter Phys 68:36601.  https://doi.org/10.1103/PhysRevE.68.036601 CrossRefGoogle Scholar
  7. Bourdin B (2007) Numerical implementation of the variational brittle fracture formulation. In: Combescure A, Belytschko T, de Borst R (eds) IUTAM symposium on discretization methods for evolving discontinuities. Springer, pp 381–394Google Scholar
  8. Cabral B, Leedom LC (1993) Imaging vector fields using line integral convolution. In: Proceedings of the 20th annual conference on computer graphics and interactive techniques—SIGGRAPH ’93. ACM Press, New York, NY, USA, pp 263–270Google Scholar
  9. Chen Z, Bakenhus D, Bobaru F (2016) A constructive peridynamic kernel for elasticity. Comput Methods Appl Mech Eng 311:356–373.  https://doi.org/10.1016/j.cma.2016.08.012 CrossRefGoogle Scholar
  10. Corson F, Adda-Bedia M, Henry H, Katzav E (2009) Thermal fracture as a framework for quasi-static crack propagation. Int J Fract 158:1–14.  https://doi.org/10.1007/s10704-009-9361-4 CrossRefGoogle Scholar
  11. Cotterell B, Rice JR (1980) Slightly curved or kinked cracks. Int J Fract 16:155–169. https://doi.org/10.1007/BF00012619
  12. Dipasquale D, Zaccariotto M, Galvanetto U (2014) Crack propagation with adaptive grid refinement in 2D peridynamics. Int J Fract 190:1–22.  https://doi.org/10.1007/s10704-014-9970-4 CrossRefGoogle Scholar
  13. Ferney BD, Devary MR, Hsia KJ, Needleman A (1999) Oscillatory crack growth in glass. Scr Mater 41:275–281.  https://doi.org/10.1016/S1359-6462(99)00161-X CrossRefGoogle Scholar
  14. Ha YD, Bobaru F (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int J Fract 162:229–244.  https://doi.org/10.1007/s10704-010-9442-4 CrossRefGoogle Scholar
  15. Hayakawa Y (1994) Numerical study of oscillatory crack propagation through a two-dimensional crystal. Phys Rev E 49:1804–1807.  https://doi.org/10.1103/PhysRevE.49.R1804 CrossRefGoogle Scholar
  16. Hu W, Ha YD, Bobaru F, Silling SA (2012) The formulation and computation of the nonlocal J-integral in bond-based peridynamics. Int J Fract 176:195–206.  https://doi.org/10.1007/s10704-012-9745-8 CrossRefGoogle Scholar
  17. Hu W, Wang Y, Yu J et al (2013) Impact damage on a thin glass plate with a thin polycarbonate backing. Int J Impact Eng 62:152–165.  https://doi.org/10.1016/j.ijimpeng.2013.07.001 CrossRefGoogle Scholar
  18. Hussain AKMF (1986) Coherent structures and turbulence. J Fluid Mech 173:303.  https://doi.org/10.1017/S0022112086001192 CrossRefGoogle Scholar
  19. Kilic B, Madenci E (2009) Prediction of crack paths in a quenched glass plate by using peridynamic theory. Int J Fract 156:165–177.  https://doi.org/10.1007/s10704-009-9355-2 CrossRefGoogle Scholar
  20. Kilic B, Madenci E (2010) Peridynamic theory for thermomechanical analysis. IEEE Trans Adv Packag 33:97–105.  https://doi.org/10.1109/TADVP.2009.2029079 CrossRefGoogle Scholar
  21. Marder M (1994) Instability of a crack in a heated strip. Phys Rev E 49:51–55.  https://doi.org/10.1103/PhysRevE.49.R51 CrossRefGoogle Scholar
  22. Menouillard T, Belytschko T (2011) Analysis and computations of oscillating crack propagation in a heated strip. Int J Fract 167:57–70.  https://doi.org/10.1007/s10704-010-9519-0
  23. Pham VB, Bahr HA, Bahr U et al (2008) Global bifurcation criterion for oscillatory crack path instability. Phys Rev E Stat Nonlinear Soft Matter Phys 77:1–10.  https://doi.org/10.1103/PhysRevE.77.066114 CrossRefGoogle Scholar
  24. Ronsin O, Heslot F, Perrin B (1995) Experimental study of quasistatic brittle crack propagation. Phys Rev Lett 75:2352–2355.  https://doi.org/10.1103/PhysRevLett.75.2352 CrossRefGoogle Scholar
  25. Ronsin O, Perrin B (1998) Dynamics of quasistatic directional crack growth. Phys Rev E 58:7878–7886.  https://doi.org/10.1103/PhysRevE.58.7878 CrossRefGoogle Scholar
  26. Sakaue K, Yoneyama S, Kikuta H, Takashi M (2008) Evaluating crack tip stress field in a thin glass plate under thermal load. Eng Fract Mech 75:1015–1026.  https://doi.org/10.1016/j.engfracmech.2007.04.025
  27. Sakaue K, Yoneyama S, Takashi M (2009) Study on crack propagation behavior in a quenched glass plate. Eng Fract Mech 76:2011–2024.  https://doi.org/10.1016/j.engfracmech.2009.05.008 CrossRefGoogle Scholar
  28. Shewchuk JR (1994) An introduction to the conjugate gradient method without the agonizing pain. Technical Report CMUCS-TR-94-125, Carnegie Mellon UniversityGoogle Scholar
  29. Shilko EV, Psakhie SG (2014) Theoretical study of peculiarities of unstable longitudinal shear crack growth in sub-Rayleigh and supershear regimes. In: International conference on physical mesomechan, pp 571–574Google Scholar
  30. Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83:1526–1535.  https://doi.org/10.1016/j.compstruc.2004.11.026 CrossRefGoogle Scholar
  31. Silling SA, Lehoucq RB (2010) Peridynamic theory of solid mechanics. In: Advances in applied mechanics, pp 73–168. https://doi.org/10.1016/S0065-2156(10)44002-8
  32. Strogatz SH (2001) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry and engineering. Westview Press, BoulderGoogle Scholar
  33. Tian X, Du Q (2013) Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations. SIAM J Numer Anal 51:3458–3482.  https://doi.org/10.1137/13091631X CrossRefGoogle Scholar
  34. van Wijk JJ (2002) Image based flow visualization. ACM Trans Graph 21:745–754.  https://doi.org/10.1145/566654.566646 Google Scholar
  35. Yang B, Ravi-Chandar K (2001) Crack path instabilities in a quenched glass plate. J Mech Phys Solids 49:91–130.  https://doi.org/10.1016/S0022-5096(00)00022-3 CrossRefGoogle Scholar
  36. Yoneyama S, Sakaue K (2014) Experimental-numerical hybrid stress analysis for a curving crack in a thin glass plate under thermal load. Eng Fract Mech 131:514–524.  https://doi.org/10.1016/j.engfracmech.2014.09.007 CrossRefGoogle Scholar
  37. Yoneyama S, Sakaue K, Kikuta H, Takashi M (2008) Observation of stress field around an oscillating crack tip in a quenched thin glass plate. Exp Mech 48:367–374.  https://doi.org/10.1007/s11340-007-9078-0 CrossRefGoogle Scholar
  38. Yuse A, Sano M (1993) Transition between crack patterns in quenched glass plates. Nature 362:329–331.  https://doi.org/10.1016/S0167-2789(97)00011-0 CrossRefGoogle Scholar
  39. Yuse A, Sano M (1997) Instabilities of quasi-static crack patterns in quenched glass plates. Phys D Nonlinear Phenom 108:365–378.  https://doi.org/10.1016/S0167-2789(97)00011-0 CrossRefGoogle Scholar
  40. Zhang G, Le Q, Loghin A et al (2016) Validation of a peridynamic model for fatigue cracking. Eng Fract Mech 162:76–94.  https://doi.org/10.1016/j.engfracmech.2016.05.008 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Mechanical and Materials EngineeringUniversity of Nebraska-LincolnLincolnUSA
  2. 2.Department of MechanicsHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations