Advertisement

International Journal of Fracture

, Volume 196, Issue 1–2, pp 223–243 | Cite as

Recent advances on hydrogen embrittlement of structural materials

  • Mohsen Dadfarnia
  • Akihide Nagao
  • Shuai Wang
  • May L. Martin
  • Brian P. Somerday
  • Petros Sofronis
Special Invited Article Celebrating IJF at 50

Abstract

This paper presents a critical review of current understanding of the effect of hydrogen on fracture and fatigue of metals and alloys. First, microstructures found immediately beneath hydrogen-induced fracture surfaces in various materials are presented. Then, recent progress toward the fundamentals of hydrogen-induced fracture is reported. Lastly, a recent attempt to model hydrogen embrittlement by linking the macroscale (e.g. applied load and hydrogen content) and the operating microscopic degradation mechanism at the local microstructural defect level is reviewed.

Keywords

Hydrogen embrittlement Fracture Fatigue Plasticity Dislocation Microstructure 

Notes

Acknowledgments

This work was supported by the DOE EERE Fuel Cells program through Grant GO 15045. M.D., A.N., S.W., B.P.S., and P.S. acknowledge the support from the World Premier International Research Center Initiative (WPI), MEXT, Japan, through the International Institute for Carbon-Neutral Energy Research (I2CNER) of Kyushu University. S.W. acknowledges support from the National Science Foundation through Award No. CMMI-1406462. The authors would also like to acknowledge Prof. I.M. Robertson at the University of Wisconsin-Madison for his guidance, support and discussions. Also, the authors acknowledge K.E. Nygren at the University of Wisconsin-Madison for fruitful discussions.

References

  1. Abe N, Suzuki H, Takai K, Hagihara Y, Sueyoshi H, Ishikawa N (2010) Hydrogen desorption spectra of \(\upalpha \)-Fe including carbon using thermal desorption spectrometer detected from low-temperature. In: CAMP-ISIJ. The 159th Iron and Steel Institute of Japan (ISIJ) Meeting, Ibaraki, Japan, Mar 28–30, 2010, vol 23Google Scholar
  2. Abe N, Suzuki H, Takai K, Ishikawa N, Sueyoshi H (2011) Identification of hydrogen trapping sites, binding energies, and occupation ratios at vacancies, dislocations and grain boundaries in iron of varying carbon content. Materials Science and Technology (MS&T) 2011. The Minerals, Metals and Materials Society, Warrendale, PA, pp 1277–1284Google Scholar
  3. Beachem CD (1972) New model for hydrogen-assisted cracking (hydrogen embrittlement). Metall Trans 3(2):437–451. doi: 10.1007/BF02642048 CrossRefGoogle Scholar
  4. Bechtle S, Kumar M, Somerday BP, Launey ME, Ritchie RO (2009) Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials. Acta Mater 57(14):4148–4157. doi: 10.1016/j.actamat.2009.05.012 CrossRefGoogle Scholar
  5. Bernstein IM, Thompson AW (1984) The role of microstructure in hydrogen embrittlement. In: Gibala R, Hehemann RF (eds) Hydrogen embrittlement and stress corrosion cracking. American Society for Metals, Metal Park, OH, pp 135–152Google Scholar
  6. Birnbaum HK (1977) Hydrogen related failure mechanisms in metals. In: Foroulis ZA (ed) Environmental sensitive fracture of engineering materials: proceedings of symposium on environmental effects on fracture. Metallurgical Society of AIME, Warrendale, PA, pp 326–360Google Scholar
  7. Birnbaum HK, Robertson IM, Sofronis P, Teter D (1997) Mechanisms of hydrogen related fracture—a review. In: Magnin T (ed) Corrosion-deformation interactions, CDI’96. The Institute of Materials, London, pp 172–195Google Scholar
  8. Birnbaum HK, Sofronis P (1994) Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture. Mater Sci Eng A 176(1–2):191–202. doi: 10.1016/0921-5093(94)90975-X CrossRefGoogle Scholar
  9. Cialone HJ, Holbrook JH (1988) Sensitivity of steels to degradation in gaseous hydrogen. In: Raymond L (ed) Hydrogen embrittlement: prevention and control, ASTM STP 962. ASTM, Philadelphia, PA, pp 134–152CrossRefGoogle Scholar
  10. Choo WY, Lee JY (1982) Thermal analysis of trapped hydrogen in pure iron. Metall Trans A 13A:135–140CrossRefGoogle Scholar
  11. Clark WAT, Wagoner RH, Shen ZY, Lee TC, Robertson IM, Birnbaum HK (1992) On the criteria for slip transmission across interfaces in polycrystals. Scr Metall Mater 26(2):203–206. doi: 10.1016/0956-716X(92)90173-C CrossRefGoogle Scholar
  12. Dadfarnia M, Novak P, Ahn DC, Liu JB, Sofronis P, Johnson DD, Robertson IM (2010) Recent advances in the study of structural materials compatibility with hydrogen. Adv Mater 22(10):1128–1135. doi: 10.1002/adma.200904354 CrossRefGoogle Scholar
  13. Dadfarnia M, Martin ML, Nagao A, Sofronis P, Robertson IM (2015) Modeling hydrogen transport by dislocations. J Mech Phys Solids 78:511–525. doi: 10.1016/j.jmps.2015.03.002 CrossRefGoogle Scholar
  14. Ebihara K, Suzudo T, Kaburaki H, Takai K, Takebayashi S (2007) Modeling of hydrogen thermal desorption profile of pure iron and eutectoid steel. ISIJ Int 47:1131–1140. doi: 10.2355/isijinternational.47.1131 CrossRefGoogle Scholar
  15. Ebihara K, Kaburaki H, Suzudo T, Takai K (2009) A numerical study on the validity of the local equilibrium hypothesis in modeling hydrogen thermal desorption spectra. ISIJ Int 49:1907–1913. doi: 10.2355/isijinternational.49.1907 CrossRefGoogle Scholar
  16. Flanagan TB, Mason NB, Birnbaum HK (1981) The effect of stress on hydride precipitation. Scripta Metall 15(1):109–112. doi: 10.1016/0036-9748(81)90148-4 CrossRefGoogle Scholar
  17. Gangloff RP, Somerday BP (eds) (2012) Gaseous hydrogen embrittlement of materials in energy technologies. Woodhead Publishing, CambridgeGoogle Scholar
  18. Geng WT, Freeman AJ, Wu R, Geller CB, Raynolds JE (1999) Embrittling and strengthening effects of hydrogen, boron, and phosphorus on a \(\Sigma 5\) nickel grain boundary. Phys Rev B 60(10):7149–7155. doi: 10.1103/PhysRevB.60.7149 CrossRefGoogle Scholar
  19. Gerberich WW (2012) Modeling hydrogen induced damage mechanisms in metals. In: Gangloff RP, Somerday BP (eds) Gaseous hydrogen embrittlement of materials in energy technologies. Woodhead Publishing, Cambridge, pp 209–246CrossRefGoogle Scholar
  20. Gerberich WW, Marsh PG, Hoehn JW (1996) Hydrogen induced cracking mechanisms—are there critical experiments? In: Thompson AW, Moody NR (eds) Hydrogen effects in materials. TMS, Warrendale, PA, pp 539–551Google Scholar
  21. Hirth JP (1984) Theories of hydrogen induced cracking of steels. In: Gibala R, Hehemann RF (eds) Hydrogen embrittlement and stress corrosion cracking. American Society for Metals, Metal Park, pp 29–41Google Scholar
  22. Hirth JP (1980) Effects of hydrogen on the properties of iron and steel. Metall Trans A 11(6):861–890. doi: 10.1007/BF02654700 CrossRefGoogle Scholar
  23. Hirth JP, Rice JR (1980) On the thermodynamics of adsorption at interfaces as it influences decohesion. Metall Trans A 11(9):1501–1511. doi: 10.1007/BF02654514 CrossRefGoogle Scholar
  24. Holbrook JH, Cialone HJ, Collings EW, Drauglis EJ, Scott PM, Mayfield ME (2012) Control of hydrogen embrittlement of metals by chemical inhibitors and coatings. In: Gangloff RP, Somerday BP (eds) Gaseous hydrogen embrittlement of materials in energy technologies. Woodhead Publishing, Cambridge, pp 129–153CrossRefGoogle Scholar
  25. Hughes DA, Hansen N (2003) Deformation structures developing on fine scales. Philos Mag 83(31–34):3871–3893. doi: 10.1080/14786430310001605560 CrossRefGoogle Scholar
  26. Johnson WH (1874) On some remarkable changes produced in iron and steel by the action of hydrogen and acids. Proc R Soc Lond 23:168–179. doi: 10.1098/rspl.1874.0024 CrossRefGoogle Scholar
  27. Jokl ML, Vitek V, McMahon CJ Jr (1980) A microscopic theory of brittle fracture in deformable solids: a relation between ideal work to fracture and plastic work. Acta Metall 28(11):1479–1488. doi: 10.1016/0001-6160(80)90048-6 CrossRefGoogle Scholar
  28. Jones RH (1990) Analysis of hydrogen-induced subcritical intergranular crack growth of iron and nickel. Acta Metall 38(9):1703–1718. doi: 10.1016/0956-7151(90)90013-7 CrossRefGoogle Scholar
  29. Keller C, Hug E, Retoux R, Feaugas X (2010) TEM study of dislocation patterns in near-surface and core regions of deformed nickel polycrystals with few grains across the cross section. Mech Mater 42(1):44–54. doi: 10.1016/j.mechmat.2009.09.002 CrossRefGoogle Scholar
  30. Kirchheim R (2007) Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background. Acta Mater 55(15):5129–5138. doi: 10.1016/j.actamat.2007.05.047 CrossRefGoogle Scholar
  31. Kirchheim R (2014) Diffusion controlled thermal desorption spectroscopy (TDS). In: Steely hydrogen conference, proceedings, Ghent, Belgium, pp e01/237–e01/254Google Scholar
  32. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29(11):1702–1706CrossRefGoogle Scholar
  33. Lassila DH, Birnbaum HK (1986) The effect of diffusive hydrogen segregation on fracture of polycrystalline nickel. Acta Metall 34(7):1237–1243. doi: 10.1016/0001-6160(86)90010-6 CrossRefGoogle Scholar
  34. Lee TC, Robertson IM, Birnbaum HK (1990a) In situ transmission electron microscope deformation study of the slip transfer mechanisms in metals. Metall Trans A 21(9):2437–2447. doi: 10.1007/BF02646988 CrossRefGoogle Scholar
  35. Lee TC, Robertson IM, Birnbaum HK (1990b) TEM in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals. Philos Mag A 62(1):131–153. doi: 10.1080/01418619008244340 CrossRefGoogle Scholar
  36. Li D, Gangloff RP, Scully JR (2004) Hydrogen trap states in ultrahigh-strength AERMET 100 steel. Metall Mater Trans A 35A:849–864CrossRefGoogle Scholar
  37. Lynch S (2011) Hydrogen embrittlement (HE) phenomena and mechanisms. In: Raja VS, Shoji T (eds) Stress corrosion cracking: theory and practice. Woodhead Publishing, Cambridge, pp 90–130CrossRefGoogle Scholar
  38. Martin ML, Fenske JA, Liu GS, Sofronis P, Robertson IM (2011a) On the formation and nature of quasi-cleavage fracture surfaces in hydrogen embrittled steels. Acta Mater 59(4):1601–1606. doi: 10.1016/j.actamat.2010.11.024 CrossRefGoogle Scholar
  39. Martin ML, Robertson IM, Sofronis P (2011) Interpreting hydrogen-induced fracture surfaces in terms of deformation processes: a new approach. Acta Mater 59(9):3680–3687. doi: 10.1016/j.actamat.2011.03.002 CrossRefGoogle Scholar
  40. Martin ML, Sofronis P, Robertson IM, Awane T, Murakami Y (2013) A microstructural based understanding of hydrogen-enhanced fatigue of stainless steels. Int J Fatigue 57:28–36. doi: 10.1016/j.ijfatigue.2012.08.009 CrossRefGoogle Scholar
  41. Martin ML, Somerday BP, Ritchie RO, Sofronis P, Robertson IM (2012) Hydrogen-induced intergranular failure in nickel revisited. Acta Mater 60(6–7):2739–2745. doi: 10.1016/j.actamat.2012.01.040 CrossRefGoogle Scholar
  42. McNabb A, Foster PK (1963) A new analysis of the diffusion of hydrogen in iron and ferritic steels. Trans Metall Soc AIME 227:618–627Google Scholar
  43. Moody NR, Robinson SL, Garrison WMJ (1990) Hydrogen effects on the properties and fracture modes of iron-based alloys. Res Mech 30(2):143–206Google Scholar
  44. Munroe PR (2009) The application of focused ion beam microscopy in the material sciences. Mater Charact 60(1):2–13. doi: 10.1016/j.matchar.2008.11.014 CrossRefGoogle Scholar
  45. Murakami Y, Kanezaki T, Mine Y (2010) Hydrogen effect against hydrogen embrittlement. Metall Mat Trans A 41(10):2548–2562. doi: 10.1007/s11661-010-0275-6 CrossRefGoogle Scholar
  46. Nagao A, Dadfarnia M, Robertson IM, Sofronis P (2015) Hydrogen embrittlement mechanisms. In: Totten GE, Colas R (eds) Encyclopedia of iron, steel, and their alloys. Taylor & Francis Group, New York, NY In PressGoogle Scholar
  47. Nagao A, Martin ML, Dadfarnia M, Sofronis P, Robertson IM (2014) The effect of nano-sized (Ti, Mo)C precipitates on hydrogen embrittlement of tempered lath martensitic steel. Acta Mater 74:244–254. doi: 10.1016/j.actamat.2014.04.051 CrossRefGoogle Scholar
  48. Nagao A, Smith CD, Dadfarnia M, Sofronis P, Robertson IM (2014) Interpretation of hydrogen-induced fracture surface morphologies for lath martensitic steel. Procedia Mater Sci 3:1700–1705. doi: 10.1016/j.mspro.2014.06.274 CrossRefGoogle Scholar
  49. Nagao A, Smith CD, Dadfarnia M, Sofronis P, Robertson IM (2012) The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel. Acta Mater 60(13–14):5182–5189. doi: 10.1016/j.actamat.2012.06.040 CrossRefGoogle Scholar
  50. Novak P, Yuan R, Somerday BP, Sofronis P, Ritchie RO (2010) A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel. J Mech Phys Solids 58(2):206–226. doi: 10.1016/j.jmps.2009.10.005 CrossRefGoogle Scholar
  51. Ono K, Meshii M (1992) Hydrogen detrapping from grain boundaries and dislocations in high purity iron. Acta Metall Mater 40(6):1357–1364. doi: 10.1016/0956-7151(92)90436-I CrossRefGoogle Scholar
  52. Oriani RA (1970) The diffusion and trapping of hydrogen in steel. Acta Metall 18(1):147–157. doi: 10.1016/0001-6160(70)90078-7 CrossRefGoogle Scholar
  53. Oriani RA, Josephic PH (1977) Equilibrium and kinetic studies of the hydrogen-assisted cracking of steel. Acta Metall 25(9):979–988. doi: 10.1016/0001-6160(77)90126-2 CrossRefGoogle Scholar
  54. Rice JR, Wang J (1989) Embrittlement of interfaces by solute segregation. Mater Sci Eng A 107(1–2):23–40. doi: 10.1016/0921-5093(89)90372-9 CrossRefGoogle Scholar
  55. Robertson IM (2001) The effect of hydrogen on dislocation dynamics. Eng Fract Mech 68(6):671–692. doi: 10.1016/S0013-7944(01)00011-X CrossRefGoogle Scholar
  56. Robertson IM, Birnbaum HK, Sofronis P (2009) Hydrogen effects on plasticity. In: Hirth JP, Kubin L (eds) Dislocations in solids. Elsevier, Oxford, pp 249–293CrossRefGoogle Scholar
  57. Robertson IM, Sofronis P, Nagao A, Martin ML, Wang S, Gross DW, Nygren KE (2015) Hydrogen embrittlement understood. Metall Mat Trans A 46(6):2323–2341. doi: 10.1007/s11661-015-2836-1 CrossRefGoogle Scholar
  58. San Marchi C, Somerday BP (2012) Technical reference for hydrogen compatibility of materials. SAND2012-7321, Sandia National Laboratories, Livermore, CAGoogle Scholar
  59. Shih DS, Robertson IM, Birnbaum HK (1988) Hydrogen embrittlement of \(\upalpha \) titanium: in situ TEM studies. Acta Metall 36(1):111–124. doi: 10.1016/0001-6160(88)90032-6 CrossRefGoogle Scholar
  60. Shin KS, Meshii M (1983) Effect of sulfur segregation and hydrogen charging on intergranular fracture of iron. Acta Metall 31(10):1559–1566. doi: 10.1016/0001-6160(83)90153-0 CrossRefGoogle Scholar
  61. Smith E (1966) The nucleation and growth of cleavage microcracks in mild steel. In: Stickland AC (ed) Proceedings of conference on physical basis of yield and fracture. Institute of Physics and Physics Society, Oxford, pp 36–46Google Scholar
  62. Sofronis P, Birnbaum HK (1995) Mechanics of the hydrogen-dislocation-impurity interactions—I. Increasing shear modulus. J Mech Phys Solids 43(1):49–90. doi: 10.1016/0022-5096(94)00056-B CrossRefGoogle Scholar
  63. Somerday BP, Sofronis P (eds) (2014) 2012 international hydrogen conference: hydrogen-materials interactions. ASME Press, New York, NYGoogle Scholar
  64. Somerday BP, Sofronis P, Nibur KA, San Marchi C, Kirchheim R (2013) Elucidating the variables affecting accelerated fatigue crack growth of steels in hydrogen gas with low oxygen concentrations. Acta Mater 61(16):6153–6170. doi: 10.1016/j.actamat.2013.07.001 CrossRefGoogle Scholar
  65. Staykov A, Yamabe J, Somerday BP (2014) Effect of hydrogen gas impurities on the hydrogen dissociation on iron surface. Int J Quantum Chem 114(10):626–635. doi: 10.1002/qua.24633 CrossRefGoogle Scholar
  66. Stull DR, Prophet H (1971) JANAF thermochemical tables. 2nd edn. National Standard Reference Data SystemGoogle Scholar
  67. Suresh S, Ritchie RO (1982) Mechanistic dissimilarities between environmentally influenced fatigue-crack propagation at near-threshold and higher growth rates in lower strength steels. Metal Sci 16(11):529–538. doi: 10.1179/msc.1982.16.11.529 CrossRefGoogle Scholar
  68. Suzuki H, Takai K (2012) Summary of round-robin tests for standardizing hydrogen analysis procedures. ISIJ Int 52:174–180. doi: 10.2355/isijinternational.52.174 CrossRefGoogle Scholar
  69. Takai K (2011) Hydrogen existing states and hydrogen embrittlement. Correl Eng 60(5):230–235. doi: 10.3323/jcorr.60.230 CrossRefGoogle Scholar
  70. Takano S, Suzuki T (1974) An electron-optical study of \(\upbeta \)-hydride and hydrogen embrittlement of vanadium. Acta Metall 22(3):265–274. doi: 10.1016/0001-6160(74)90166-7 CrossRefGoogle Scholar
  71. Thompson AW, Bernstein IM (1980) Metallurgical variables in environmental fracture. In: Fontana MG, Staehle R (eds) Advances in corrosion science and technology. Plenum Publishing, New York, pp 53–175CrossRefGoogle Scholar
  72. Yamaguchi T, Nagumo M (2003) Simulation of hydrogen thermal desorption under reversible trapping by lattice defects. ISIJ Int 43:514–519Google Scholar
  73. Wang S, Martin ML, Robertson IM, Sofronis P (2015) Effect of hydrogen environment on the separation of Fe grain boundaries. Acta Mater (under review)Google Scholar
  74. Wang S, Martin ML, Sofronis P, Ohnuki S, Hashimoto N, Robertson IM (2014) Hydrogen-induced intergranular failure of iron. Acta Mater 69:275–282. doi: 10.1016/j.actamat.2014.01.060
  75. Wei F-G, Enomoto M, Tsuzaki K (2012) Applicability of the Kissinger’s formula and comparison with the McNabb–Foster model in simulation of thermal desorption spectrum. Comput Mater Sci 51:322–330. doi: 10.1016/j.commatsci.2011.07.009 CrossRefGoogle Scholar
  76. Wei FG, Tsuzaki K (2006) Quantitative analysis on hydrogen trapping of TiC particles in steel. Metall Mater Trans A 37A:331–353. doi: 10.1007/s11661-006-0004-3 CrossRefGoogle Scholar
  77. Wu R, Freeman AJ, Olson GB (1994) First principles determination of the effects of phosphorus and boron on iron grain boundary cohesion. Science 265(5170):376–380. doi: 10.1126/science.265.5170.376 CrossRefGoogle Scholar
  78. Yamaguchi T, Nagumo M (2003) Simulation of hydrogen thermal desorption under reversible trapping by lattice defects. ISIJ Int 43:514–519. doi: 10.2355/isijinternational.43.514 CrossRefGoogle Scholar
  79. Zhong L, Wu R, Freeman AJ, Olson GB (2000) Charge transfer mechanism of hydrogen-induced intergranular embrittlement of iron. Phys Rev B 62(21):13938–13941. doi: 10.1103/PhysRevB.62.13938 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Mohsen Dadfarnia
    • 1
    • 6
  • Akihide Nagao
    • 2
    • 6
  • Shuai Wang
    • 3
    • 6
  • May L. Martin
    • 4
  • Brian P. Somerday
    • 5
    • 6
  • Petros Sofronis
    • 1
    • 6
  1. 1.Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Material Surface and Interface Science Research Department, Steel Research LaboratoryJFE Steel CorporationKawasakiJapan
  3. 3.Department of Materials Science and EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  4. 4.Institut für MaterialphysikGeorg-August-Universität GöttingenGöttingenGermany
  5. 5.Sandia National LaboratoriesLivermoreUSA
  6. 6.International Institute for Carbon-Neutral Energy Research (WPI-I2CNER)Kyushu UniversityFukuokaJapan

Personalised recommendations