International Journal of Fracture

, Volume 195, Issue 1–2, pp 1–14 | Cite as

Stochastic fracture analysis of cracked structures with random field property using the scaled boundary finite element method

  • X. Y. Long
  • C. Jiang
  • X. Han
  • W. Gao
  • D. Q. Zhang
Original Paper


This paper presents a stochastic fracture analysis method for random non-homogenous cracked structures using the scaled boundary finite element method (SBFEM). The analyzed cracked domain is divided into polygon-based sub-domains such that the material property of each sub-domain can be modeled differently in the SBFEM. The spatial variability of the material property is represented as random field which is then incorporated directly into the coefficient matrices of the SBFEM. The stochastic global stiffness matrix and the stochastic equilibrium equation of the SBFEM through which the stochastic structural responses can be successfully calculated are further formulated. The stochastic stress intensity factors (SIFs) considering the spatial variability of the material property are then directly extracted from the stress solution of the cracked polygon. Numerical examples are given to demonstrate the validity of the proposed method and investigate the effect of the spatial distribution of the material property on the SIFs.


Scaled boundary finite element method Random field  Scaled boundary polygons Stochastic fracture 



This work is supported by the State Key Program of National Science Foundation of China (11232004), the National Natural Science Foundation of China (51175160), and the National Excellent Doctoral Dissertation special fund (201235).


  1. Chiong I, Ooi ET, Song CM, Tinc-Loi F (2014) Scaled boundary polygons with application to fracture analysis of functionally graded materials. Int J Numer Methods Eng 98(8):562–589. doi: 10.1002/nme.4645 CrossRefGoogle Scholar
  2. Chowdhury MS, Song CM, Gao W (2011) Probabilistic fracture mechanics by using Monte Carlo simulation and the scaled boundary finite element method. Eng Fract Mech 78(12):2369–2389. doi: 10.1016/j.engfracmech.2011.05.008 CrossRefGoogle Scholar
  3. Deeks A, Wolf J (2002) A virtual work derivation of the scaled boundary finite-element method for elastostatics. Comput Mech 28(6):489–504. doi: 10.1007/s00466-002-0314-2 CrossRefGoogle Scholar
  4. Erdogan F, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng 85(4):519–525. doi: 10.1115/1.3656897 CrossRefGoogle Scholar
  5. Ghanem RG (1999) The nonlinear Gaussian spectrum of log-normal stochastic processes and variables. J Appl Mech 66(4):964–973. doi: 10.1115/1.2791806 CrossRefGoogle Scholar
  6. Ghanem RG, Spanos PD (1991a) Spectral stochastic finite-element formulation for reliability analysis. J Eng Mech. doi: 10.1061/(ASCE)0733-9399(1991)117:10(2351)
  7. Ghanem RG, Spanos PD (1991b) Stochastic finite elements: a spectral approach. Springer, BerlinCrossRefGoogle Scholar
  8. Huang SP, Quek ST, Phoon KK (2001) Convergence study of the truncated Karhunen–Loeve expansion for simulation of stochastic processes. Int J Numer Methods Eng 52(9):1029–1043. doi: 10.1002/nme.255 CrossRefGoogle Scholar
  9. Irwin GR (1948) Fracture dynamics. Fract Met 147:166Google Scholar
  10. Jiang C, Long XY, Han X, Tao Y, Liu J (2013) Probability-interval hybrid reliability analysis for cracked structures existing epistemic uncertainty. Eng Fract Mech 112:148–164. doi: 10.1016/j.engfracmech.2013.10.009 Google Scholar
  11. Koutsourelakis PS, Deodatis G (2006) Simulation of multidimensional binary random fields with application to modeling of two-phase random media. J Eng Mech 132(6):619–631. doi: 10.1061/(ASCE)0733-9399(2006)132:6(619) CrossRefGoogle Scholar
  12. Lin S-C, Abel JF (1988) Variational approach for a new direct-integration form of the virtual crack extension method. Int J Fract 38(3):217–235. doi: 10.1007/BF00034286 Google Scholar
  13. Long XY, Jiang C, Han X, Gao W (2015) Stochastic response analysis of the scaled boundary finite element method and application to probabilistic fracture mechanics. Comput Struct 153:185–200. doi: 10.1016/j.compstruc.2015.03.004 CrossRefGoogle Scholar
  14. Long XY, Jiang C, Han X, Gao W, Bi R (2014) Sensitivity analysis of the scaled boundary finite element method for elastostatics. Comput Methods Appl Mech Eng 276:212–232. doi: 10.1016/j.cma.2014.03.005 CrossRefGoogle Scholar
  15. Ooi ET, Yang Z (2011) Modelling dynamic crack propagation using the scaled boundary finite element method. Int J Numer Methods Eng 88(4):329–349. doi: 10.1002/nme.3177 CrossRefGoogle Scholar
  16. Ooi ET, Song CM, Tinc-Loi F, Yang Z (2012) Polygon scaled boundary finite elements for crack propagation modelling. Int J Numer Methods Eng 91(3):319–342. doi: 10.1002/nme.4284 CrossRefGoogle Scholar
  17. Ooi ET, Song CM, Tin-Loi F (2014) A scaled boundary polygon formulation for elasto-plastic analyses. Comput Methods Appl Mech Eng 268:905–937. doi: 10.1016/j.cma.2013.10.021 CrossRefGoogle Scholar
  18. Phoon K, Huang S, Quek S (2002) Implementation of Karhunen–Loeve expansion for simulation using a wavelet-Galerkin scheme. Probab Eng Mech 17(3):293–303. doi: 10.1016/S0266-8920(02)00013-9 CrossRefGoogle Scholar
  19. Rahman S, Rao B (2002) Probabilistic fracture mechanics by Galerkin meshless methods-part II: reliability analysis. Comput Mech 28(5):365–374. doi: 10.1007/s00466-002-0300-8 CrossRefGoogle Scholar
  20. Rao B, Rahman S (2002) Probabilistic fracture mechanics by Galerkin meshless methods-part I: rates of stress intensity factors. Comput Mech 28(5):351–364. doi: 10.1007/s00466-002-0299-x CrossRefGoogle Scholar
  21. Song CM (2005) Evaluation of power-logarithmic singularities, T-stresses and higher order terms of in-plane singular stress fields at cracks and multi-material corners. Eng Fract Mech 72(10):1498–1530. doi: 10.1016/j.engfracmech.2004.11.002 CrossRefGoogle Scholar
  22. Song CM, Vrcelj Z (2008) Evaluation of dynamic stress intensity factors and T-stress using the scaled boundary finite-element method. Eng Fract Mech 75(8):1960–1980. doi: 10.1016/j.engfracmech.2007.11.009 CrossRefGoogle Scholar
  23. Song CM, Wolf JP (1997) The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for elastodynamics. Comput Methods Appl Mech Eng 147(3):329–355. doi: 10.1016/S0045-7825(97)00021-2 CrossRefGoogle Scholar
  24. Song CM, Wolf JP (1998) The scaled boundary finite-element method: analytical solution in frequency domain. Comput Methods Appl Mech Eng 164(1):249–264. doi: 10.1016/S0045-7825(98)00058-9 CrossRefGoogle Scholar
  25. Song CM, Wolf JP (2002) Semi-analytical representation of stress singularities as occurring in cracks in anisotropic multi-materials with the scaled boundary finite-element method. Comput Struct 80(2):183–197. doi: 10.1016/S0045-7949(01)00167-5 CrossRefGoogle Scholar
  26. Stefanou G (2009) The stochastic finite element method: past, present and future. Comput Methods in Appl Mech Eng 198(9):1031–1051. doi: 10.1016/j.cma.2008.11.007 CrossRefGoogle Scholar
  27. Steven Greene M, Liu Y, Chen W, Liu WK (2011) Computational uncertainty analysis in multiresolution materials via stochastic constitutive theory. Comput Methods in Appl Mech Eng 200(1):309–325. doi: 10.1016/j.cma.2010.08.013 CrossRefGoogle Scholar
  28. Su C, Zheng C (2012) Probabilistic fracture mechanics analysis of linear-elastic cracked structures by spline fictitious boundary element method. Eng Anal Bound Elem 36(12):1828–1837. doi: 10.1016/j.enganabound.2012.06.006 CrossRefGoogle Scholar
  29. Sudret B, Der Kiureghian A (2000) Stochastic finite element methods and reliability: a state-of-the-art report. Department of Civil and Environmental Engineering, University of California, BerkeleyGoogle Scholar
  30. Sukumar N, Tabarraei A (2004) Conforming polygonal finite elements. Int J Numer Methods Eng 61(12):2045–2066. doi: 10.1002/nme.1141 CrossRefGoogle Scholar
  31. Tomar V, Zhou M (2005) Deterministic and stochastic analyses of fracture processes in a brittle microstructure system. Eng Fract Mech 72(12):1920–1941. doi: 10.1016/j.engfracmech.2004.06.006 CrossRefGoogle Scholar
  32. Wolf JP, Song CM (2000) The scaled boundary finite-element method—a primer: derivations. Comput Struct 78(1):191–210. doi: 10.1016/S0045-7949(00)00099-7 CrossRefGoogle Scholar
  33. Xu X, Graham-Brady L (2005) A stochastic computational method for evaluation of global and local behavior of random elastic media. Comput Methods Appl Mech Eng 194(42):4362–4385. doi: 10.1016/j.cma.2004.12.001 CrossRefGoogle Scholar
  34. Yang ZJ (2006) Fully automatic modelling of mixed-mode crack propagation using scaled boundary finite element method. Eng Fract Mech 73(12):1711–1731. doi: 10.1016/j.engfracmech.2006.02.004 CrossRefGoogle Scholar
  35. Yang ZJ, Frank XuX (2008) A heterogeneous cohesive model for quasi-brittle materials considering spatially varying random fracture properties. Comput Methods Appl Mech Eng 197(45):4027–4039. doi: 10.1016/j.cma.2008.03.027 CrossRefGoogle Scholar
  36. Yang ZJ, Su X, Chen J, Liu G (2009) Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials. Int J Solids Struct 46(17):3222–3234. doi: 10.1016/j.ijsolstr.2009.04.013 CrossRefGoogle Scholar
  37. Yin X, Lee S, Chen W, Liu WK, Horstemeyer M (2009) Efficient random field uncertainty propagation in design using multiscale analysis. J Mech Des 131(2):021006. doi: 10.1115/1.3042159 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • X. Y. Long
    • 1
  • C. Jiang
    • 1
  • X. Han
    • 1
  • W. Gao
    • 2
  • D. Q. Zhang
    • 1
  1. 1.State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle EngineeringHunan UniversityChangsha CityPeople’s Republic of China
  2. 2.School of Civil and Environmental EngineeringThe University of New South WalesSydneyAustralia

Personalised recommendations