International Journal of Fracture

, Volume 193, Issue 2, pp 171–187 | Cite as

Stress analysis and configurational forces for cracks in TRIP-steels

  • Meinhard Kuna
  • Andreas Burgold
  • Stefan Prüger
Original Paper


TRIP-steels are known to possess attractive mechanical properties attributed to the austenite-martensite phase transformation, which provides additional deformability and hardening. In the present work the influence of strain-induced phase transformation on fracture is studied numerically for a casted TRIP-steel utilizing a recently developed material model. Large strain finite element analyses are carried out for a two-dimensional crack under small-scale yielding conditions to determine mechanical fields and fracture characterizing parameters. The results show that the hardening effect of martensite formation causes increased stresses and stress triaxiality ahead of the crack tip, which has implications for failure behavior. In order to generalize the classical J-integral for transformation plasticity, the concept of material forces is applied and numerically implemented. An appropriate path-independent formulation of the J-integral is suggested for TRIP-steels. A considerable amount of material forces is due to plastic deformation and phase transformation. The resultant material force at the crack tip is considered as the relevant energetic driving force for fracture. Furthermore, crack growth resistance curves \(J-{\varDelta } a\) are simulated by means of a cohesive zone model, which allows to simulate the intrinsic fracture toughness. From the analyses, the beneficial impact of strain-induced phase transformation on the fracture resistance R-curves can be concluded. The transformation zone affects an energetic shielding of the very fracture process zone.


TRIP-steel Strain-induced phase transformation Crack tip stress fields Configurational forces J-integral  Transformation toughening 



The authors gratefully acknowledge the Deutsche Forschungsgemeinschaft (DFG) for supporting this work carried out in the Collaborative Research Center TRIP-Matrix Composite (SFB 799, C5).


  1. Antolovich SD, Fahr D (1972) An experimental investigation of the fracture characteristics of TRIP alloys. Eng Fract Mech 4:133–144. doi: 10.1016/0013-7944(72)90083-5 CrossRefGoogle Scholar
  2. Antolovich SD, Singh B (1971) On the toughness increment associated with the austenite to martensite phase transformation in TRIP steels. Metall Mater Trans B 2:2135–2141. doi: 10.1007/BF02917542 CrossRefGoogle Scholar
  3. Burgold A, Kuna M, Prüger S (2014) Material forces in consideration of phase transformation in TRIP-steel. Procedia Mater Sci 3:461–466. doi: 10.1016/j.mspro.2014.06.077 20th European Conference on FractureCrossRefGoogle Scholar
  4. Chatterjee S, Bhadeshia HKDH (2006) TRIP-assisted steels: cracking of high-carbon martensite. Mater Sci Technol 22:645–649. doi: 10.1179/174328406X86182 CrossRefGoogle Scholar
  5. Fischer FD, Reisner G, Werner E, Tanaka K, Cailletaud G, Antretter T (2000) A new view on transformation induced plasticity TRIP. Int J Plast 16:723–748. doi: 10.1016/S0749-6419(99)00078-9 CrossRefGoogle Scholar
  6. Gerberich WW, Hemmings PL, Zackay VF (1971) Fracture and fractography of metastable austenites. Metall Mater Trans B 2:2243–2253. doi: 10.1007/BF02917557 CrossRefGoogle Scholar
  7. Gross D, Kolling S, Mueller R, Schmidt I (2003) Configurational forces and their application in solid mechanics. Eur J Mech A 22:669–692CrossRefGoogle Scholar
  8. Gurtin ME (2000) Configurational forces as basic concept of continuum physics. Springer, BerlinGoogle Scholar
  9. Hallberg H, Håkansson P, Ristinmaa M (2007) A constitutive model for the formation of martensite in austenitic steels under large strain plasticity. Int J Plast 23:1213–1239. doi: 10.1016/j.ijplas.2006.11.002 CrossRefGoogle Scholar
  10. Hallberg H, Banks-Sills L, Ristinmaa M (2012) Crack tip transformation zones in austenitic stainless steel. Eng Fract Mech 79:266–280. doi: 10.1016/j.engfracmech.2011.11.004 CrossRefGoogle Scholar
  11. Hutchinson JW (1968) Singular behavior at the end of a tensile crack tip in a hardening material. J Mech Phys Solids 16:13–31CrossRefGoogle Scholar
  12. Iwamoto T (2004) Multiscale computational simulation of deformation behavior of TRIP steel with growth of martensitic particles in unit cell by asymptotic homogenization method. Int J Plast 20:841–869. doi: 10.1016/j.ijplas.2003.05.002 CrossRefGoogle Scholar
  13. Iwamoto T, Tsuta T (2002) Computational simulation on deformation behavior of CT specimens of TRIP steel under mode I loading for evaluation of fracture toughness. Int J Plast 18:1583–1606. doi: 10.1016/S0749-6419(02)00030-X CrossRefGoogle Scholar
  14. Jacques P, Furnemont Q, Pardoen T, Delannay F (2001) On the role of martensitic transformation on damage and cracking resistance in TRIP-assisted multiphase steels. Acta Mater 49:139–152. doi: 10.1016/S1359-6454(00)00215-9 CrossRefGoogle Scholar
  15. Jikai L, Coret M, Combescure A, Chaudet P (2012) J-integral based fracture toughness of 15Cr-5Ni stainless steel during phase transformation. Eng Fract Mech 96:328–339. doi: 10.1016/j.engfracmech.2012.08.001 CrossRefGoogle Scholar
  16. Kienzler R, Herrmann G (2000) Mechanics in material space. With application to defect and fracture mechanics. Springer, BerlinGoogle Scholar
  17. Krüger L, Wolf S, Martin U, Scheller P, Jahn A, Weidner A (2009) Strain rate and temperature effects on stress–strain behaviour of cast high alloyed CrMnNi-steel. In: 9th international conference on the mechanical and physical behaviour of materials under dynamic loading, DYMAT 2009, Brussels, pp 1069–1074. doi: 10.1051/dymat/2009149
  18. Krüger L, Wolf S, Martin S, Martin U, Jahn A, Weidner A, Scheller P (2011) Strain rate dependent flow stress and energy absorption behaviour of cast CrMnNi TRIP/TWIP steels. Steel Res Int 82:1087–1093. doi: 10.1002/srin.201100067 CrossRefGoogle Scholar
  19. Kuna M (2013) Finite elements in fracture mechanics: theory - numerics - applications. Springer Science+Business Media, DordrechtCrossRefGoogle Scholar
  20. Lacroix G, Pardoen T, Jacques PJ (2008) The fracture toughness of TRIP-assisted multiphase steels. Acta Mater 56:3900–3913. doi: 10.1016/j.actamat.2008.04.035 CrossRefGoogle Scholar
  21. Lee MG, Kim SJ, Han HN (2010) Crystal plasticity finite element modeling of mechanically induced martensitic transformation (MIMT) in metastable austenite. Int J Plast 26:688–710. doi: 10.1016/j.ijplas.2009.10.001 CrossRefGoogle Scholar
  22. Maugin GA (1993) Material inhomogeneities in elasticity. Chapman & Hall, LondonCrossRefGoogle Scholar
  23. McMeeking RM (1977) Finite deformation analysis of crack-tip opening in elastic–plastic materials and implications for fracture. J Mech Phys Solids 25:357–381. doi: 10.1016/0022-5096(77)90003-5 CrossRefGoogle Scholar
  24. Moran B, Shih CF (1987) Crack tip and associated domain integrals from momentum and energy balance. Eng Fract Mech 27:615–642CrossRefGoogle Scholar
  25. Müller R, Kolling S, Gross D (2002) On configurational forces in the context of the finite element method. Int J Numer Meth Eng 53:1557–1574CrossRefGoogle Scholar
  26. Neimitz A, Graba M, Galkiewicz J (2007) An alternative formulation of the Ritchie–Knott–Rice local fracture criterion. Eng Fract Mech 74:1308–1322. doi: 10.1016/j.engfracmech.2006.07.015 CrossRefGoogle Scholar
  27. Nguyen T, Govindjee S, Klein P, Gao H (2005) A material force method for inelastic fracture mechanics. J Mech Phys Solids 53:91–121CrossRefGoogle Scholar
  28. Olson GB, Cohen M (1975) Kinetics of strain-induced martensitic nucleation. Metall Trans A 6:791–795. doi: 10.1007/BF02672301 CrossRefGoogle Scholar
  29. Papatriantafillou I, Agoras M, Aravas N, Haidemenopoulos G (2006) Constitutive modeling and finite element methods for TRIP steels. Comput Methods Appl Mech Eng 195:5094–5114. doi: 10.1016/j.cma.2005.09.026 CrossRefGoogle Scholar
  30. Prüger S, Kuna M, Nagel K, Biermann H (2011a) Implementation of a material model for a cast TRIP-steel. In: Computational plasticity XI - fundamentals and applications, 11th international conference on computational plasticity, Barcelona, pp 858–869Google Scholar
  31. Prüger S, Kuna M, Wolf S, Krüger L (2011b) A material model for TRIP-steels and its application to a CrMnNi cast alloy. Steel Res Int 82:1070–1079. doi: 10.1002/srin.201100072 CrossRefGoogle Scholar
  32. Prüger S, Seupel A, Kuna M (2014) A thermomechanically coupled material model for TRIP-steel. Int J Plast 55:182–197. doi: 10.1016/j.ijplas.2013.10.005 CrossRefGoogle Scholar
  33. Rice JR, Rosengren GF (1968) Plain strain deformation near a crack tip in a power-law hardening material. J Mech Phys Solids 16:1–12CrossRefGoogle Scholar
  34. Ritchie RO, Knott JF, Rice JR (1973) On the relationship between critical tensile stress and fracture toughness in mild steel. J Mech Phys Solids 21:395–410. doi: 10.1016/0022-5096(73)90008-2
  35. Simha NK, Fischer FD, Shan GX, Chen CR, Kolednik O (2008) J-integral and crack driving force in elastic-plastic materials. J Mech Phys Solids 56:2876–2895CrossRefGoogle Scholar
  36. Socrate S (1995) Mechanics of microvoid nucleation and growth in high-strength metastable austenitic steels. PhD thesis, Department of Mechanical Engineering, Massachusets Institute of TechnologyGoogle Scholar
  37. Stringfellow R (1990) Mechanics of strain-induced transformation toughening in metastable austenitic steels. PhD thesis, Department of Mechanical Engineering, Massachusets Institute of TechnologyGoogle Scholar
  38. Tvergaard V, Hutchinson JW (1992) The relation between crack growth resistance and fracture process parameters in elastic–plastic solids. J Mech Phys Solids 40:1377–1397Google Scholar
  39. Wolf S (2012) Temperatur- und dehnratenabhängiges Werkstoffverhalten einer hochlegierten CrMnNi-TRIP/TWIP-Stahlgusslegierung unter einsinniger Zug- und Druckbeanspruchung. PhD thesis, TU Freiberg, (in german)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Meinhard Kuna
    • 1
  • Andreas Burgold
    • 1
  • Stefan Prüger
    • 2
  1. 1.TU Bergakademie FreibergInstitute of Mechanics and Fluid DynamicsFreibergGermany
  2. 2.TU DresdenInstitute of Mechanics and Shell StructuresDresdenGermany

Personalised recommendations