International Journal of Fracture

, Volume 187, Issue 2, pp 293–299 | Cite as

Pore–crack orientation effects on fracture behavior of brittle porous materials

  • Özgür Keleş
  • R. Edwin García
  • Keith J. Bowman
Brief Note


Mechanical behavior of two-dimensional microstructures containing circular pores were simulated under uniaxial and biaxial loading using the finite element method. Resulting stress distributions were combined with classical fracture mechanics to investigate fracture behavior of brittle porous materials assuming that randomly oriented cracks are present along pore surfaces. Multiple crack orientations were found to introduce a variability in Weibull modulus even for the same set of microstructures containing equal number and size of cracks. Also, the variability increases with increasing crack size to pore size ratio. Under uniaxial loading, angular distribution of fracture origin widens with increasing porosity.


Porosity versus Weibull modulus Pore–crack interaction  Pore–pore interaction 


  1. Ashby M (2013) Designing architectured materials. Scr Mater 68(1):4–7CrossRefGoogle Scholar
  2. Atkinson A, Selçuk A (1997) Mechanical properties of ceramic materials for solid oxide fuel cells. In: Stimming U, Singhal SC, Tagawa H, Lehnert W (eds) Proceedings of the 5th international symposium on solid oxide fuel cells, Electrochemical society proceedings, pp 671–680Google Scholar
  3. Atkinson A, Bastid P, Liu Q (2007) Mechanical properties of magnesia-spinel composites. J Am Ceram Soc 90(8):2489–2496CrossRefGoogle Scholar
  4. Bertolotti RL, Fulrath RM (1967) Effect of micromechanical stress concentrations on strength of porous glass. J Am Ceram Soc 50(11):558–562CrossRefGoogle Scholar
  5. Biswas DR, Fulrath RM (1977) Mechanical properties of porous PNZT polycrystalline ceramics. In: Bradt RC, Hasselman DPH, Lange FF (eds) Fracture mechanics of ceramics, vol 4. Crack growth and microstructure, Plenum Press, pp 933–944Google Scholar
  6. Biswas DR, Fulrath RM (1980) Strength of porous polycrystalline ceramics. Trans J Br Ceram Soc 79(1):1Google Scholar
  7. Brechet Y, Embury J (2013) Architectured materials: expanding materials space. Scr Mater 68(1):1–3CrossRefGoogle Scholar
  8. Chen PY, Lin AYM, Lin YS, Seki Y, Stokes AG, Peyras J, Olevsky EA, Meyers MA, McKittrick J (2008) Structure and mechanical properties of selected biological materials. J Mech Behav Biomed Mater 1(3):208–226CrossRefGoogle Scholar
  9. Davis ME (2002) Ordered porous materials for emerging applications. Nature 417(6891):813–821CrossRefGoogle Scholar
  10. Evans AG, Biswas DR, Fulrath RM (1979) Some effects of cavities on the fracture of ceramics: II, spherical cavities. J Am Ceram Soc 62(1–2):101–106CrossRefGoogle Scholar
  11. Fallet A, Lhuissier P, Salvo L, Martin C, Wiegmann A, Kabel M (2013) Multi- functional optimization of random hollow sphere stackings. Scr Mater 68(1):35–38CrossRefGoogle Scholar
  12. Fan X, Case ED, Ren F, Shu Y, Baumann MJ (2012a) Part I: porosity dependence of the Weibull modulus for hydroxyapatite and other brittle materials. J Mech Behav Biomed Mater 8:21–36CrossRefGoogle Scholar
  13. Fan X, Case ED, Ren F, Shu Y, Baumann MJ (2012b) Part II: fracture strength and elastic modulus as a function of porosity for hydroxyapatite and other brittle materials. J Mech Behav Biomed Mater 8:99–110CrossRefGoogle Scholar
  14. Frandsen HL, Ramos T, Faes A, Pihlatie M, Brodersen K (2012) Optimization of the strength of SOFC anode supports. J Eur Ceram Soc 32(5):1041–1052CrossRefGoogle Scholar
  15. Gerrienne P, Gensel PG, Strullu-Derrien C, Lardeux H, Steemans P, Prestianni C (2011) A simple type of wood in two early devonian plants. Science 333(6044):837–837CrossRefGoogle Scholar
  16. Giannini M, Soares CJ, de Carvalho RM (2004) Ultimate tensile strength of tooth structures. Dent Mater 20(4):322–329CrossRefGoogle Scholar
  17. Hasselman DPH, Fulrath RM (1967) Micromechanical stress concentrations in two-phase brittle-matrix ceramic composites. J Am Ceram Soc 50(8):399–404CrossRefGoogle Scholar
  18. Kachanov M (1993) Elastic solids with many cracks and related problems. Adv Appl Mech 30:259–445CrossRefGoogle Scholar
  19. Keleş Ö, García RE, Bowman KJ (2013a) Deviations from Weibull statistics in brittle porous materials. Acta Mater 61(19):7207–7215Google Scholar
  20. Keleş Ö, García RE, Bowman KJ (2013b) Stochastic failure of isotropic, brittle materials with uniform porosity. Acta Mater 61(8):2853–2862Google Scholar
  21. Kishimoto A, Koumoto K, Yanagida H, Nameki M (1991) Microstructure dependence of mechanical and dielectric strengths—i. porosity. Eng Fract Mech 40(4):927–930CrossRefGoogle Scholar
  22. Krstic VD (2006) Effect of microstructure on fracture of brittle materials: unified approach. Theor Appl Fract Mech 45(3):212–226CrossRefGoogle Scholar
  23. Lai W, Erdonmez CK, Marinis TF, Bjune CK, Dudney NJ, Xu F, Wartena R, Chiang YM (2010) Ultrahigh-energy-density microbatteries enabled by new electrode architecture and micropackaging design. Adv Mater 22(20):E139–E144CrossRefGoogle Scholar
  24. Launey ME, Buehler MJ, Ritchie RO (2010) On the mechanistic origins of toughness in bone. Annu Rev Mater Res 40:25–53CrossRefGoogle Scholar
  25. Li Y, Wu D, Zhang J, Chang L, Wu D, Fang Z, Shi Y (2000) Measurement and statistics of single pellet mechanical strength of differently shaped catalysts. Powder Technol 113(1):176–184CrossRefGoogle Scholar
  26. Liu DM (1996) Control of pore geometry on influencing the mechanical property of porous hydroxyapatite bioceramic. J Mater Sci Lett 15(5):419–421Google Scholar
  27. Liu X, Martin CL, Delette G, Bouvard D (2010) Elasticity and strength of partially sintered ceramics. J Mech Phys Solids 58(6):829–842CrossRefGoogle Scholar
  28. Lopes MA, Monteiro FJ, Santos JD (1999) Glass-reinforced hydroxyapatite composites: secondary phase proportions and densification effects on biaxial bending strength. J Biomed Mater Res 48(5):734–740 Google Scholar
  29. Meyers MA, Chen PY, Lin AYM, Seki Y (2008) Biological materials: structure and mechanical properties. Prog Mater Sci 53(1):1–206Google Scholar
  30. Miserez A, Weaver JC, Pedersen PB, Schneeberk T, Hanlon RT, Kisailus D, Birkedal H (2009) Microstructural and biochemical characterization of the nanoporous sucker rings from dosidicus gigas. Adv Mater 21(4):401–406CrossRefGoogle Scholar
  31. Murray MGS, Wang J, Ponton CB, Marquis PM (1995) An improvement in processing of hydroxyapatite ceramics. J Mater Sci 30(12):3061–3074CrossRefGoogle Scholar
  32. Nanjangud SC, Brezny R, Green DJ (1995) Strength and young’s modulus behavior of a partially sintered porous alumina. J Am Ceram Soc 78(1):266–268CrossRefGoogle Scholar
  33. Pissenberger A, Gritzner G (1995) Preparation and properties of niobia-and tantala-doped orthorhombic zirconia. J Mater Sci Lett 14(22):1580–1582CrossRefGoogle Scholar
  34. Radovic M, Lara-Curzio E (2004) Mechanical properties of tape cast nickel-based anode materials for solid oxide fuel cells before and after reduction in hydrogen. Acta Mater 52(20):5747–5756CrossRefGoogle Scholar
  35. Rice RW (1998) Porosity of ceramics. CRC Press, Boca Raton, FLGoogle Scholar
  36. Rossoll A, Mortensen A (2013) On the load-bearing efficiency of open-cell foams: a comparison of two architectures related to two processes. Scr Mater 68(1):44–49CrossRefGoogle Scholar
  37. Ruys AJ, Wei M, Sorrell CC, Dickson MR, Brandwood A, Milthorpe BK (1995) Sintering effects on the strength of hydroxyapatite. Biomaterials 16(5):409–415CrossRefGoogle Scholar
  38. Shah RC (1976) Mechanics of crack growth. ASTM STP 590:429–459Google Scholar
  39. Wallace JS (1978) Effect of mechanical discontinuities on the strength of polycrystalline aluminum oxide. Master’s thesis, University of California, BerkeleyGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Özgür Keleş
    • 1
  • R. Edwin García
    • 2
  • Keith J. Bowman
    • 1
    • 2
  1. 1.Department of Mechanical, Materials, and Aerospace EngineeringIllinois Institute of TechnologyChicagoUSA
  2. 2.School of Materials EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations