Skip to main content
Log in

Pore–crack orientation effects on fracture behavior of brittle porous materials

  • Brief Note
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Mechanical behavior of two-dimensional microstructures containing circular pores were simulated under uniaxial and biaxial loading using the finite element method. Resulting stress distributions were combined with classical fracture mechanics to investigate fracture behavior of brittle porous materials assuming that randomly oriented cracks are present along pore surfaces. Multiple crack orientations were found to introduce a variability in Weibull modulus even for the same set of microstructures containing equal number and size of cracks. Also, the variability increases with increasing crack size to pore size ratio. Under uniaxial loading, angular distribution of fracture origin widens with increasing porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ashby M (2013) Designing architectured materials. Scr Mater 68(1):4–7

    Article  Google Scholar 

  • Atkinson A, Selçuk A (1997) Mechanical properties of ceramic materials for solid oxide fuel cells. In: Stimming U, Singhal SC, Tagawa H, Lehnert W (eds) Proceedings of the 5th international symposium on solid oxide fuel cells, Electrochemical society proceedings, pp 671–680

  • Atkinson A, Bastid P, Liu Q (2007) Mechanical properties of magnesia-spinel composites. J Am Ceram Soc 90(8):2489–2496

    Article  Google Scholar 

  • Bertolotti RL, Fulrath RM (1967) Effect of micromechanical stress concentrations on strength of porous glass. J Am Ceram Soc 50(11):558–562

    Article  Google Scholar 

  • Biswas DR, Fulrath RM (1977) Mechanical properties of porous PNZT polycrystalline ceramics. In: Bradt RC, Hasselman DPH, Lange FF (eds) Fracture mechanics of ceramics, vol 4. Crack growth and microstructure, Plenum Press, pp 933–944

  • Biswas DR, Fulrath RM (1980) Strength of porous polycrystalline ceramics. Trans J Br Ceram Soc 79(1):1

    Google Scholar 

  • Brechet Y, Embury J (2013) Architectured materials: expanding materials space. Scr Mater 68(1):1–3

    Article  Google Scholar 

  • Chen PY, Lin AYM, Lin YS, Seki Y, Stokes AG, Peyras J, Olevsky EA, Meyers MA, McKittrick J (2008) Structure and mechanical properties of selected biological materials. J Mech Behav Biomed Mater 1(3):208–226

    Article  Google Scholar 

  • Davis ME (2002) Ordered porous materials for emerging applications. Nature 417(6891):813–821

    Article  Google Scholar 

  • Evans AG, Biswas DR, Fulrath RM (1979) Some effects of cavities on the fracture of ceramics: II, spherical cavities. J Am Ceram Soc 62(1–2):101–106

    Article  Google Scholar 

  • Fallet A, Lhuissier P, Salvo L, Martin C, Wiegmann A, Kabel M (2013) Multi- functional optimization of random hollow sphere stackings. Scr Mater 68(1):35–38

    Article  Google Scholar 

  • Fan X, Case ED, Ren F, Shu Y, Baumann MJ (2012a) Part I: porosity dependence of the Weibull modulus for hydroxyapatite and other brittle materials. J Mech Behav Biomed Mater 8:21–36

    Article  Google Scholar 

  • Fan X, Case ED, Ren F, Shu Y, Baumann MJ (2012b) Part II: fracture strength and elastic modulus as a function of porosity for hydroxyapatite and other brittle materials. J Mech Behav Biomed Mater 8:99–110

    Article  Google Scholar 

  • Frandsen HL, Ramos T, Faes A, Pihlatie M, Brodersen K (2012) Optimization of the strength of SOFC anode supports. J Eur Ceram Soc 32(5):1041–1052

    Article  Google Scholar 

  • Gerrienne P, Gensel PG, Strullu-Derrien C, Lardeux H, Steemans P, Prestianni C (2011) A simple type of wood in two early devonian plants. Science 333(6044):837–837

    Article  Google Scholar 

  • Giannini M, Soares CJ, de Carvalho RM (2004) Ultimate tensile strength of tooth structures. Dent Mater 20(4):322–329

    Article  Google Scholar 

  • Hasselman DPH, Fulrath RM (1967) Micromechanical stress concentrations in two-phase brittle-matrix ceramic composites. J Am Ceram Soc 50(8):399–404

    Article  Google Scholar 

  • Kachanov M (1993) Elastic solids with many cracks and related problems. Adv Appl Mech 30:259–445

    Article  Google Scholar 

  • Keleş Ö, García RE, Bowman KJ (2013a) Deviations from Weibull statistics in brittle porous materials. Acta Mater 61(19):7207–7215

    Google Scholar 

  • Keleş Ö, García RE, Bowman KJ (2013b) Stochastic failure of isotropic, brittle materials with uniform porosity. Acta Mater 61(8):2853–2862

    Google Scholar 

  • Kishimoto A, Koumoto K, Yanagida H, Nameki M (1991) Microstructure dependence of mechanical and dielectric strengths—i. porosity. Eng Fract Mech 40(4):927–930

    Article  Google Scholar 

  • Krstic VD (2006) Effect of microstructure on fracture of brittle materials: unified approach. Theor Appl Fract Mech 45(3):212–226

    Article  Google Scholar 

  • Lai W, Erdonmez CK, Marinis TF, Bjune CK, Dudney NJ, Xu F, Wartena R, Chiang YM (2010) Ultrahigh-energy-density microbatteries enabled by new electrode architecture and micropackaging design. Adv Mater 22(20):E139–E144

    Article  Google Scholar 

  • Launey ME, Buehler MJ, Ritchie RO (2010) On the mechanistic origins of toughness in bone. Annu Rev Mater Res 40:25–53

    Article  Google Scholar 

  • Li Y, Wu D, Zhang J, Chang L, Wu D, Fang Z, Shi Y (2000) Measurement and statistics of single pellet mechanical strength of differently shaped catalysts. Powder Technol 113(1):176–184

    Article  Google Scholar 

  • Liu DM (1996) Control of pore geometry on influencing the mechanical property of porous hydroxyapatite bioceramic. J Mater Sci Lett 15(5):419–421

    Google Scholar 

  • Liu X, Martin CL, Delette G, Bouvard D (2010) Elasticity and strength of partially sintered ceramics. J Mech Phys Solids 58(6):829–842

    Article  Google Scholar 

  • Lopes MA, Monteiro FJ, Santos JD (1999) Glass-reinforced hydroxyapatite composites: secondary phase proportions and densification effects on biaxial bending strength. J Biomed Mater Res 48(5):734–740

    Google Scholar 

  • Meyers MA, Chen PY, Lin AYM, Seki Y (2008) Biological materials: structure and mechanical properties. Prog Mater Sci 53(1):1–206

    Google Scholar 

  • Miserez A, Weaver JC, Pedersen PB, Schneeberk T, Hanlon RT, Kisailus D, Birkedal H (2009) Microstructural and biochemical characterization of the nanoporous sucker rings from dosidicus gigas. Adv Mater 21(4):401–406

    Article  Google Scholar 

  • Murray MGS, Wang J, Ponton CB, Marquis PM (1995) An improvement in processing of hydroxyapatite ceramics. J Mater Sci 30(12):3061–3074

    Article  Google Scholar 

  • Nanjangud SC, Brezny R, Green DJ (1995) Strength and young’s modulus behavior of a partially sintered porous alumina. J Am Ceram Soc 78(1):266–268

    Article  Google Scholar 

  • Pissenberger A, Gritzner G (1995) Preparation and properties of niobia-and tantala-doped orthorhombic zirconia. J Mater Sci Lett 14(22):1580–1582

    Article  Google Scholar 

  • Radovic M, Lara-Curzio E (2004) Mechanical properties of tape cast nickel-based anode materials for solid oxide fuel cells before and after reduction in hydrogen. Acta Mater 52(20):5747–5756

    Article  Google Scholar 

  • Rice RW (1998) Porosity of ceramics. CRC Press, Boca Raton, FL

    Google Scholar 

  • Rossoll A, Mortensen A (2013) On the load-bearing efficiency of open-cell foams: a comparison of two architectures related to two processes. Scr Mater 68(1):44–49

    Article  Google Scholar 

  • Ruys AJ, Wei M, Sorrell CC, Dickson MR, Brandwood A, Milthorpe BK (1995) Sintering effects on the strength of hydroxyapatite. Biomaterials 16(5):409–415

    Article  Google Scholar 

  • Shah RC (1976) Mechanics of crack growth. ASTM STP 590:429–459

    Google Scholar 

  • Wallace JS (1978) Effect of mechanical discontinuities on the strength of polycrystalline aluminum oxide. Master’s thesis, University of California, Berkeley

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özgür Keleş.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keleş, Ö., García, R.E. & Bowman, K.J. Pore–crack orientation effects on fracture behavior of brittle porous materials. Int J Fract 187, 293–299 (2014). https://doi.org/10.1007/s10704-014-9934-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-014-9934-8

Keywords

Navigation