International Journal of Fracture

, Volume 187, Issue 1, pp 51–75 | Cite as

Cohesive model approach to the nucleation and propagation of cracks due to a thermal shock

  • Christian J. Cyron
  • Jean-Jacques Marigo
  • Paul Sicsic
Original Paper


This paper studies the initiation of cohesive cracks in the thermal shock problem through a variational analysis. A two-dimensional semi-infinite slab with an imposed temperature drop on its free surface is considered. Assuming that cracks are periodically distributed and orthogonal to the surface, at short times we show that the optimum is a distribution of infinitely close cohesive cracks. This leads us to introduce a homogenized effective behavior which reveals to be stable for small times, thanks to the irreversibility. At a given loading cracks with a non-cohesive part nucleate. We characterize the periodic array of these macro-cracks between which the micro-cracks remain. Finally, for longer times, the cohesive behavior converges towards that from Griffith’s evolution law. Numerical investigations complete and quantify the analytical results.


Thermal shock Cohesive surface energy Crack initiation Micro-cracks Stability 



C. Cyron and J.-J. Marigo were partially supported by the French Agence Nationale de la Recherche (ANR) under Grant T-Shock (OTP J11R087).


  1. Abdelmoula R, Marigo J-J, Weller T (2010) Construction and justification of paris-like fatigue laws from dugdale-type cohesive models. Ann Solid Struct Mech 1(3–4):139–158. doi: 10.1007/s12356-010-0011-3. ISSN:1867-6936
  2. Bahr HA, Fischer G, Weiss HJ (1986) Thermal-shock crack patterns explained by single and multiple crack propagation. J Mater Sci 21:2716–2720. doi: 10.1007/BF00551478 Google Scholar
  3. Bahr H-A, Weiss H-J, Bahr U, Hofmann M, Fischer G, Lampenscherf S, Balke H (2010) Scaling behavior of thermal shock crack patterns and tunneling cracks driven by cooling or drying. J Mech Phys Solids 58(9):1411–1421. doi: 10.1016/j.jmps.2010.05.005. ISSN:0022-5096
  4. Ball J, James R (1989) Fine phase mixtures as minimizers of energy. In: Analysis and continuum mechanics. Springer, Berlin, pp 647–686. doi: 10.1007/978-3-642-83743-2_36. ISBN:978-3-540-50917-2
  5. Barenblatt G (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7(1):55–129CrossRefGoogle Scholar
  6. Bazant Z, Ohtsubo H, Aoh K (1979) Stability in post-critical growth of a cooling or shrinking cracks. Int J Fract 15:443–456CrossRefGoogle Scholar
  7. Bazant Z, Kim J, Jeon S (2003) Cohesive fracturing and stresses caused by hydration heat in massive concrete wall. J Eng Mech 129(1):21–30. doi: 10.1061/(ASCE)0733-9399(2003)129:1(21). Google Scholar
  8. Bhattacharya K, Dolzmann G (2001) Relaxation of some multi-well problems. Proc R Soc Edinb Sect A Math 131:279–320. doi: 10.1017/S0308210500000883. ISSN:1473–7124
  9. Bouchitté G, Fonseca I, Mascarenhas L (1998) A global method for relaxation. Arch Ration Mech Anal 145(1):51–98CrossRefGoogle Scholar
  10. Bourdin B, Francfort G-A, Marigo J-J (2008) The variationnal approach to fracture. J Elast 91:5–148CrossRefGoogle Scholar
  11. Charlotte M, Francfort G, Marigo J-J, Truskinovsky L (2000) Revisiting brittle fracture as an energy minimization problem: comparison of Griffith and Barenblatt surface energy models. In: Benallal A (ed) Proceedings of the symposium on “continuous damage and fracture”. Elsevier, Paris, pp 7–12Google Scholar
  12. Charlotte M, Laverne J, Marigo J-J (2006) Initiation of cracks with cohesive force models: a variational approach. Eur J Mech A/Solids 25(4):649–669. doi: 10.1016/j.euromechsol.2006.05.002. ISSN:0997-7538Google Scholar
  13. Dacorogna B (1989) Direct methods in the calculus of variations. Springer, BerlinCrossRefGoogle Scholar
  14. Dal Maso G, Garroni A (2008) Gradient bounds for minimizers of free discontinuity problems related to cohesive zone models in fracture mechanics. Calc Var Partial Differ Equ 31(2):137–145. doi: 10.1007/s00526-006-0084-3. ISSN:0944-2669
  15. Dugdale D (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2):100–104CrossRefGoogle Scholar
  16. Ferdjani H, Abdelmoula R, Marigo J-J (2007) Insensitivity to small defects of the rupture of materials governed by the dugdale model. Continuum Mech Thermodyn 19(3–4):191–210. doi: 10.1007/s00161-007-0051-z. ISSN:0935-1175
  17. Francfort GA, Marigo J-J (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8):1319–1342CrossRefGoogle Scholar
  18. Geyer JF, Nemat-Nasser S (1982) Experimental investigation of thermally induced interacting cracks in brittle solids. Int J Solids Struct 18(4):349–356. doi: 10.1016/0020-7683(82)90059-2. ISSN:0020-7683
  19. Griffith AA (1920) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond Ser A 221:163–198CrossRefGoogle Scholar
  20. Hasselman D (1963) Elastic energy at fracture and surface energy as design criteria for thermal shock. J Am Ceram Soc 46(11):535–540CrossRefGoogle Scholar
  21. Jagla EA (2002) Stable propagation of an ordered array of cracks during directional drying. Phys Rev E 65:046147. doi: 10.1103/PhysRevE.65.046147 CrossRefGoogle Scholar
  22. Jaubert A, Marigo J-J (2006) Justification of paris-type fatigue laws from cohesive forces model via a variational approach. Continuum Mech Thermodyn V18(1):23–45. doi: 10.1007/s00161-006-0023-8 CrossRefGoogle Scholar
  23. Jenkins DR (2005) Optimal spacing and penetration of cracks in a shrinking slab. Phys Rev E 71:056117. doi: 10.1103/PhysRevE.71.056117 CrossRefGoogle Scholar
  24. Jiang C, Wu X, Li J, Song F, Shao Y, Xu X, Yan P (2012) A study of the mechanism of formation and numerical simulations of crack patterns in ceramics subjected to thermal shock. Acta Materialia 60(11):4540–4550. doi: 10.1016/j.actamat.2012.05.020. ISSN:1359-6454Google Scholar
  25. Marigo J-J, Truskinovsky L (2004) Initiation and propagation of fracture in the models of griffith and barenblatt. Continuum Mech Thermodyn 16(4):391–409 Google Scholar
  26. Marigo J-J (2010) Initiation of cracks in griffith’s theory: An argument of continuity in favor of global minimization. J Nonlinear Sci 20(6):831–868. doi: 10.1007/s00332-010-9074-x. ISSN:0938-8974
  27. Ortiz M (1988) Microcrack coalescence and macroscopic crack growth initiation in brittle solids. Int J Solids Struct 24(3):231–250. doi: 10.1016/0020-7683(88)90031-5. ISSN:0020-7683
  28. Pichler B, Dormieux L (2009) Instability during cohesive zone growth. Eng Fract Mech 76(11):1729–1749. doi: 10.1016/j.engfracmech.2009.03.011. ISSN:0013-7944Google Scholar
  29. Sicsic P, Marigo J-J, Maurini C (2013) Initiation of a periodic array of cracks in the thermal shock problem: a gradient damage modeling. J Mech Phys Solids. doi: 10.1016/j.jmps.2013.09.003
  30. Talon C, Curnier A (2003) A model of adhesion coupled to contact and friction. Eur J Mech A/Solids 22(4):545–565. doi: 10.1016/S0997-7538(03)00046-9. ISSN:0997-7538Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Christian J. Cyron
    • 1
    • 2
  • Jean-Jacques Marigo
    • 1
  • Paul Sicsic
    • 1
    • 3
  1. 1.Laboratoire de Mécanique des Solides (UMR 7549)Palaiseau CedexFrance
  2. 2.Department of Biomedical EngineeringYale UniversityNew HavenUSA
  3. 3.Lafarge Centre de RechercheSt-Quentin-FallavierFrance

Personalised recommendations