International Journal of Fracture

, Volume 176, Issue 2, pp 237–244 | Cite as

Simple New Expressions for the Notch Stress Intensity Factors in an Array of Narrow V–Notches Under Tension

  • F. Berto
  • P. Lazzarin
  • R. Afshar
Letters in Fracture and Micromechanics


Taking advantage of some recent closed form expressions for the strain energy density in a control volume embracing the notch tip, some simple expressions are derived for the Notch Stress Intensity Factors of an infinite array of double symmetric lateral notches and edge notches under tension loading. The new expressions are applicable to narrow notches when the ratio between the notch depth and the plate width, a/W, is lower than 0.025 providing very accurate results.


Periodic notches Notch Stress Intensity Factor (NSIF) Strain Energy Density (SED) notch spacing narrow notches 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Filippi S., Atzori B., Lazzarin P., Berto F. (2005) Stress distributions in notched structural components under pure bending and combined traction and bending. Fatigue & Fracture of Engineering Materials & Structures 28: 13–23CrossRefGoogle Scholar
  2. Bazant Z.P., Ohtsubo H. (1977) Stability conditions for propagation of a system of cracks in a brittle solid. Mechanics Research Communications 4: 353–66Google Scholar
  3. Berto F., Lazzarin P., Wang C.H. (2004) Three–dimensional linear elastic distributions of stress and strain energy density ahead of V–shaped notches in plates of arbitrary thickness. International Journal of Fracture 127: 265–282CrossRefGoogle Scholar
  4. Berto F., Lazzarin P., Gómez F.J., Elices M. (2007a) Fracture assessment of U–notches under mixed mode loading: two procedures based on the equivalent local mode I concept. International Journal of Fracture 148: 415–433CrossRefGoogle Scholar
  5. Berto F., Lazzarin P., Matvienko Yu. (2007b) J–integral evaluation for U– and V–blunt notches under Mode I loading and materials obeying a power hardening law International Journal of Fracture 146: 33–51Google Scholar
  6. Berto F., CroccoloD. Cuppini R. (2008) Fatigue strength of a fork–pin equivalent coupling in terms of the local strain energy density Materials and Design 29: 1780–1792Google Scholar
  7. Berto F., Lazzarin P. (2009) A review of the volume–based strain energy density approach applied to V–notches and welded structures. Theoretical and Applied Fracture Mechanics 52: 183–194CrossRefGoogle Scholar
  8. Berto F., Lazzarin P. (2010) On higher order terms in the crack tip stress field. International Journal of Fracture 161: 221–226CrossRefGoogle Scholar
  9. Erdogan F. (1962) On the stress distribution in plates with collinear cuts under arbitrary loads, Proceedings of the Fourth US National Congress of Applied Mechanics, 547–554.Google Scholar
  10. Gómez F.J., Elices M., Berto F., Lazzarin P. (2009) Fracture of V–notched specimens under mixed mode (I+II) loading in brittle materials. International Journal of Fracture 159: 121–135CrossRefGoogle Scholar
  11. Harding S., Kotousov A., Lazzarin P., Berto F. (2010) Transverse singular effects in V–shaped notches stressed in Mode II, International Journal of Fracture 164: 1–14Google Scholar
  12. Kachanov M. (1985) A simple technique of stress analysis in elastic solids with many cracks. International Journal of Fracture 28: R11–R19Google Scholar
  13. Koiter W.T. (1959) An infinite row of collinear cracks in an infinite elastic sheet. Ing. Arch. 28: 168–172CrossRefGoogle Scholar
  14. Lachenbruch A.H. (1962) Mechanics of thermal contraction cracks and ice–wedge polygons in permafrost. Geological Society of America Special Paper. Waverly Press, Baltimore, MDGoogle Scholar
  15. Lazzarin P., Zambardi R. (2001) A finite–volume–energy based approach to predict the static and fatigue behaviour of components with sharp V–shaped notches. International Journal of Fracture 112: 275–298CrossRefGoogle Scholar
  16. Lazzarin P., Berto F. (2005a) Some expressions for the strain energy in a finite volume surrounding the root of blunt V–notches. International Journal of Fracture 135: 161–185CrossRefGoogle Scholar
  17. Lazzarin P., Berto F. (2005b) From Neuber’s elementary volume to Kitagawa and Atzori’s diagrams: an interpretation based on local energy. International Journal of Fracture 135: L33–L38CrossRefGoogle Scholar
  18. Lazzarin P., Berto F., Gómez F.J., Zappalorto M. (2008) Some advantages derived from the use of the strain energy density over a control volume in fatigue strength assessments of welded joints. International Journal of Fatigue 30: 1345–1357CrossRefGoogle Scholar
  19. Lazzarin P., Berto F., Zappalorto M. (2010) Rapid calculations of notch stress intensity factors based on averaged strain energy density from coarse meshes: Theoretical bases and applications. International Journal of Fatigue 32: 1559–1567CrossRefGoogle Scholar
  20. Lazzarin P, Zappalorto M, Berto F. (2011) Generalised stress intensity factors for rounded notches in plates under in–plane shear loading. International Journal of Fracture 170: 123–144CrossRefGoogle Scholar
  21. Murakami Y. (2001) Stress intensity factors handbook, Volume 5. Elsevier Science Ltd, Oxford UKGoogle Scholar
  22. Noda N.A., Oda K., Inoue T. (1996a) Analysis of newly–defined stress intensity factors for angular corners using singular integral equations of the body force method. International Journal of Fracture 76: 243–261CrossRefGoogle Scholar
  23. Noda N.A., Kawashima Y., Moriyama S., Oda K. (1996) Interaction of newly defined stress intensity factors for angular corners in a row of diamond–shaped inclusions. International Journal of Fracture 82: 267–295CrossRefGoogle Scholar
  24. Parker A.P. (1999) Stability of arrays of multiple edge cracks. Engineering Fracture Mechanics 62: 577–591CrossRefGoogle Scholar
  25. Pook L.P. (1990) Stress intensity factor expressions for regular crack arrays in pressurised cylinders. Fatigue and Fracture of Engineering Materials and Structures 13: 135–143CrossRefGoogle Scholar
  26. Rubinstein A.A. (1987) Semi–infinite array of cracks in a uniform stress field. Engineering Fracture Mechanics 26: 15–21CrossRefGoogle Scholar
  27. Tada, H., Paris, P.C, Irwin, G. (1985) The stress analysis of cracks handbook, St Louis, Paris Productions Incorporated and Del Research Corporate, 2nd ed.Google Scholar
  28. Williams M.L. (1952) Stress singularities resulting from various boundary conditions in angular corners of plates in tension. Journal of Applied Mechanics 19: 526–528Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Management and EngineeringUniversity of PadovaVicenzaItaly

Personalised recommendations