Advertisement

International Journal of Fracture

, Volume 176, Issue 2, pp 151–161 | Cite as

Numerical investigation of dynamic crack branching under biaxial loading

  • Y. B. Zhang
  • C. A. Tang
  • H. Li
  • Z. Z. Liang
  • S. B. Tang
  • Y. F. Yang
Original Paper

Abstract

Dynamic crack growth and branching of a running crack under various biaxial loading conditions in homogeneous and heterogeneous brittle or quasi-brittle materials is investigated numerically using RFPA2D (two-dimensional rock failure process analysis)-Dynamic program which is fully parallelized with OpenMP directives on Windows. Six 2D models were set up to examine the effect of biaxial dynamic loading and heterogeneity on crack growth. The numerical simulation vividly depicts the whole evolution of crack and captured the crack path and the angles between branches. The path of crack propagation for homogenous materials is straight trajectory while for heterogeneous materials is curved. Increasing the ratio of the loading stress in x-direction to the stress in y-direction, the macroscopic angles between branches become larger. Some parasitic small cracks are also observed in simulation. For heterogeneous brittle and quasi-brittle materials coalescence of the microcracks is the mechanism of dynamic crack growth and branching. The crack tip propagation velocity is determined by material properties and independent of loading conditions.

Keywords

Numerical simulation Dynamic crack branching Biaxial loading Heterogeneity Parallel computation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adda-Bedia M (2005) Brittle fracture dynamics with arbitrary paths III. The branching instability under general loading. J Mech Phys Solids 53: 227–248CrossRefGoogle Scholar
  2. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45: 601–620CrossRefGoogle Scholar
  3. Belytschko T, Chen H, Xu J, Zi G (2003) Dynamic crack propagation based on loss of hyperbolicity with a new discontinuous enrichment. Int J Numer Meth Eng 58: 1873–1905CrossRefGoogle Scholar
  4. Bowden FP, Brunton JH, Field JE, Heyes AD (1967) Controlled fracture of brittle solids and interruption of electrical current. Nature 216: 38–42CrossRefGoogle Scholar
  5. Cox BN, Gao H, Gross D, Rittel D (2005) Modern topics and challenges in dynamic fracture. J Mech Phys Solids 53: 565–596CrossRefGoogle Scholar
  6. Eshelby JD (1970) Energy relations and the energy-momentum tensor in continuum mechanics. In: Kanninen MF, Adler WF, Rosenfield AR, Jaffee RI (eds) Inelastic behaviour of solids. pp 77–144Google Scholar
  7. Fedelinsky P, Aliabadi MH (1997) The time-domain dbem for rapidly growing cracks. Int J Numer Methods Eng 40: 1555–1572CrossRefGoogle Scholar
  8. Freund LB (1998) Dynamic fracture mechanics. Cambridge University Press, CambridgeGoogle Scholar
  9. Ha YD, Bobaru F (2011) Characteristics of dynamic brittle fracture captured with peridynamics. Eng Fract Mech 78: 1156–1168CrossRefGoogle Scholar
  10. Hawong JS, Kobayashi AS, Dadkhah MS, Kang BSJ, Ramulu M (1987) Dynamic crack curving and branching under biaxial loading. Exp Mech 27: 146–153CrossRefGoogle Scholar
  11. Kalthoff JF (1973) On the propagation direction of bifurcated cracks. In: Sin GC (ed) Dynamic crack propagation. Noordhoff, Leyden, pp 449–458Google Scholar
  12. Murphy N, Ali M, Ivankovic A (2006) Dynamic crack bifurcation in PMMA. Eng Fract Mech 73: 2569–2587CrossRefGoogle Scholar
  13. Nishioka T (2010) Advanced studies on simulation methodologies for very complicated fracture phenomena. IOP Conf Ser Mater Sci Eng 10:012046. doi: 10.1088/1757-899X/10/1/012046
  14. Rafiee S, Seelig Th, Gross D (2003) Simulation of dynamic crack curving and branching under biaxial loading by a time domain boundary integral equation method. Int J Fract 120: 545–561CrossRefGoogle Scholar
  15. Ramulu M, Kobayashi AS (1985) Mechanics of crack curving and branching—a dynamic fracture analysis. Int J Fract 27: 187–201CrossRefGoogle Scholar
  16. Ravi-Chandar K, Knauss WG (1984a) An experimental investigation into dynamic fracture-I crack initiation and crack arrest. Int J Fract 25: 247–262CrossRefGoogle Scholar
  17. Ravi-Chandar K, Knauss WG (1984b) An experimental investigation into dynamic fracture-II Mi-crostructural aspects. Int J Fract 26: 65–80CrossRefGoogle Scholar
  18. Ravi-Chandar K, Knauss WG (1984c) An experimental investigation into dynamic fracture-III On steady-state crack propagation and crack branching. Int J Fract 26: 141–154CrossRefGoogle Scholar
  19. Ravi-Chandar K, Knauss WG (1984d) An experimental investigation into dynamic fracture-IV On the interaction of stress waves with propagating cracks. Int J Fract 26: 189– 200CrossRefGoogle Scholar
  20. Ravi-Chandar K, Yang B (1997) On the role of microcracks in the dynamic fracture of brittle materials. J Mech Phys Solids 45: 535–563CrossRefGoogle Scholar
  21. Réthoré J, Gravouil A, Combescure A (2004) A stable numerical scheme for the finite element simulation of dynamic crack propagation with remeshing. Comput Meth Appl Mech Eng 193: 42–44CrossRefGoogle Scholar
  22. Réthoré J, Gravouil A, Combescure A (2005) An energy conserving scheme for dynamic crack growth using the extended fnite element method. Int J Numer Meth Eng 63: 631–659CrossRefGoogle Scholar
  23. Schardin H (1959) Velocity effects in fracture. In: Averbach BL, Felbeck DK, Hahn GT, Thomas DA (eds) Fracture. Wiley, New York, pp 297–329Google Scholar
  24. Sharon E, Fineberg J (1996) Microbranching instability and the dynamic fracture of brittle materials. Phys Rev B 54: 7128–7139CrossRefGoogle Scholar
  25. Sharon E, Fineberg J (1999) Confirming the continuum theory of dynamic brittle fracture for fast cracks. Nature 397: 333–335CrossRefGoogle Scholar
  26. Song JH, Areias PMA, Belytschko T (2006) A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Methods Eng 67: 868–893CrossRefGoogle Scholar
  27. Tada T, Yamashita T (1997) Nonhypersingular boundary integral equations for two-dimensional nonplanar crack analysis. Geophys J 130: 269–282CrossRefGoogle Scholar
  28. Tang CA (1997) Numerical simulation of progressive rock failure and associated seismicity. Int J Rock Mech Min Sci 34(2): 249–262CrossRefGoogle Scholar
  29. Xu XP, Needleman A (1994) Numerical simulation of fast crack growth in brittle solids. J Mech Phys Solids 42(9): 1397–1434CrossRefGoogle Scholar
  30. Yoffe E (1951) The moving griffith crack. Philos Mag 42: 739–750Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Y. B. Zhang
    • 1
    • 2
  • C. A. Tang
    • 1
    • 2
  • H. Li
    • 1
    • 2
  • Z. Z. Liang
    • 1
    • 2
  • S. B. Tang
    • 1
    • 2
  • Y. F. Yang
    • 1
    • 2
  1. 1.Center for Rock Instability and Seismicity ResearchDalian University of TechnologyDalianChina
  2. 2.State Key Laboratory of Coastal and Offshore EngineeringDalian University of TechnologyDalianChina

Personalised recommendations