Identification of damage and cracking behaviours based on energy dissipation mode analysis in a quasi-brittle material using digital image correlation

  • Paul Leplay
  • Julien Réthoré
  • Sylvain Meille
  • Marie-Christine Baietto
Original Paper


Characterizing the crack stability to predict the behaviour of ceramics designed for industrial use is a challenging issue. It requires accurate crack tip detection during the controlled crack propagation of notched bending tests. Different indirect methods are available, like for instance the compliance technique. Recently, techniques based on digital image correlation (DIC) have emerged: finite-element DIC (FE-DIC) with a finite element decomposition of the displacement field, integrated-DIC (I-DIC) based on Williams’ series decomposition of the displacement field and regularized-DIC (R-DIC) for mechanical constraints. These full-field techniques enable the quantification of the crack length and the stress intensity factor K I . In this paper, these four methods are compared in terms of measurements of crack lengths and stress intensity factors during a notched bending test. The tested material is a damageable quasi-brittle ceramic at room temperature. The non linearity of the stress-strain law of this microcraked ceramic results in a complex behaviour that is not captured by the compliance method during the bending test. Therefore the linear elastic compliance method leads to a different estimation of crack lengths and stress intensity factors compared to DIC methods. On the other hand, the R-DIC approach handles the non linear material constitutive behaviour. It allows a deeper analysis of the mechanical fields, the energy dissipation and the damage mechanisms during the crack propagation.


Fracture Damage Digital image correlation Equilibrium gap method Quasi-brittle ceramic Energy dissipation Bending test 


  1. Avril S, Bonnet M, Bretelle AS, Grediac M, Hild F, Ienny P, Latourte F, Lemosse D, Pagano S, Pagnacco E et al (2008) Overview of identification methods of mechanical parameters based on full-field measurements. Exp Mech 48(4): 381–402CrossRefGoogle Scholar
  2. Besnard G, Hild F, Roux S (2006) Finite-element displacement fields analysis from digital images: application to portevin–le châtelier bands. Exp Mech 46(6): 789–803CrossRefGoogle Scholar
  3. Bornhauser A, Kromp K, Pabst RF (1985) R-curve evaluation with ceramic materials at elevated temperatures by an energy approach using direct observation and compliance calculation of the crack length. J Mater Sci 20(7): 2586–2596CrossRefGoogle Scholar
  4. Bouquet M, Birbis JM, Quenisset JM (1990) Toughness assessment of ceramic matrix composites. Compos Sci Technol 37(1–3): 223–248CrossRefGoogle Scholar
  5. Bui HD, Germain P (1978) Mécanique de la rupture fragile. Masson ParisGoogle Scholar
  6. Chen CH, Awaji H (2007) Temperature dependence of mechanical properties of aluminum titanate ceramics. J Eur Ceram Soc 27(1): 13–18CrossRefGoogle Scholar
  7. Chevalier J (1996) Etude de la propagation des fissures dans une zircone 3Y-TZP pour applications biomedicales. PhD thesis, INSA de LyonGoogle Scholar
  8. Garwood SJ, Robinson JN, Turner CE (1975) The measurement of crack growth resistance curves (r-curves) using the j integral. Int J Fract 11(3): 528–530Google Scholar
  9. Hamam R, Hild F, Roux S (2007) Stress intensity factor gauging by digital image correlation: application in cyclic fatigue. Strain 43(3): 181–192CrossRefGoogle Scholar
  10. Hamano K, Ohya Y, Nakagawa Z (1985) Crack propagation resistance of aluminium titanate ceramics. Int J High Technol Ceram 1(2): 129–137CrossRefGoogle Scholar
  11. Henninger C, Roux S, Hild F (2010) Enriched kinematic fields of cracked structures. Int J Solids Struct 1Google Scholar
  12. Hild F, Roux S (2006) Digital image correlation: from displacement measurement to identification of elastic properties-a review. Strain 42(2): 69–80CrossRefGoogle Scholar
  13. Hild F, Roux S, Gras R, Guerrero N, Marante ME, Florez-Lopez J (2009) Displacement measurement technique for beam kinematics. Opt Lasers Eng 47(3–4): 495–503CrossRefGoogle Scholar
  14. Kim IJ, Gauckler LJ (2008) Excellent thermal shock resistant materials with low thermal expansion coefficients. J Ceram Process Res 9(3): 240–245Google Scholar
  15. Lawn BR, Marshall DB (1998) Nonlinear stress-strain curves for solids containing closed cracks with friction. J Mech Phys Solids 46(1): 85–113CrossRefGoogle Scholar
  16. Lemaître J, Chaboche JL (1988) Mecanique des Materiaux Solides 2nd edn. Dunod, ParisGoogle Scholar
  17. Leplay P, Réthoré J, Meille S, Baietto M-C (2010) Damage law identification of a quasi-brittle ceramic from a bending test using digital image correlation. J Eur Ceram Soc 30: 2715–2725CrossRefGoogle Scholar
  18. Mazars J (1986) A description of micro- and macroscale damage of concrete structures. Eng Fract Mech 25(5–6): 729–737CrossRefGoogle Scholar
  19. Melendez-Martinez JJ, Jimenez-Melendo M, Dominguez-Rodriguez A, Wotting G (2001) High temperature mechanical behavior of aluminium titanate–mullite composites. J Eur Ceram Soc 21(1): 63–70CrossRefGoogle Scholar
  20. Peters WH, Ranson WF (1982) Digital imaging techniques in experimental stress analysis. Opt Eng 21(3): 427–431Google Scholar
  21. Rannou J, Limodin N, Réthoré J, Gravouil A, Ludwig W, Baietto-Dubourg M-C, Buffiere J-Y, Combescure A, Hild F, Roux S (2010) Three dimensional experimental and numerical multiscale analysis of a fatigue crack. Comput Methods Appl Mech Eng 199: 1307–1325CrossRefGoogle Scholar
  22. Réthoré J (2009) Optimal identification of mechanical properties from digital images. Int J Numer Methods Eng (submitted)Google Scholar
  23. Réthoré J, Hild F, Roux S (2008) Extended digital image correlation with crack shape optimization. Int J Numer Methods Eng 73: 248–272CrossRefGoogle Scholar
  24. Réthoré J, Elguedj T, Simon P, Coret M (2009) On the use of nurbs functions for displacement derivatives measurement by digital image correlation. Exp Mech 50(7): 1099–1116CrossRefGoogle Scholar
  25. Réthoré J, Roux S, Hild F (2009) An extended and integrated digital image correlation technique applied to the analysis of fractured samples. Eur J Comput Mech 18: 285–306Google Scholar
  26. Rethore J, Roux S, Hild F (2011) Optimal and noise-robust extraction of fracture mechanics parameters from kinematic measurements. Eng Fract Mech 78(9): 1827–1845CrossRefGoogle Scholar
  27. Rice JR, Paris PC, Merkle JG (1973) Progress in flaw growth and fracture toughness testing. J Am Ceram Soc 536: 231–245Google Scholar
  28. Robert L, Nazaret F, Cutard T, Orteu JJ (2007) Use of 3-d digital image correlation to characterize the mechanical behavior of a fiber reinforced refractory castable. Exp Mech 47(6): 761–773CrossRefGoogle Scholar
  29. Roux S, Hild F (2006) Stress intensity factor measurements from digital image correlation: post-processing and integrated approaches. Int J Fract 140(1): 141–157CrossRefGoogle Scholar
  30. Roux S, Réthoré J, Hild F (2009) Digital image correlation and fracture: an advanced technique for estimating stress intensity factors of 2D and 3D cracks. J Phys D Appl Phys 42: 214004CrossRefGoogle Scholar
  31. Sakai M, Urashima K, Inagaki M (1983) Energy principle of elastic-plastic fracture and its application to the fracture mechanics of a polycrystalline graphite. J Am Ceram Soc 66(12): 868–874CrossRefGoogle Scholar
  32. Surrel Y (2004) Full-field optical methods for mechanical engineering: essential concepts to find ones way. Compos Test Model Identif 1: 21–23Google Scholar
  33. Sun Y, Pang JHL, Wong CK, Su F (2005) Finite element formulation for a digital image correlation method. Appl Opt 44(34): 7357–7363CrossRefGoogle Scholar
  34. Sutton MA, Wolters WJ, Peters WH, Ranson WF, McNeill SR (1983) Determination of displacements using an improved digital correlation method. Image Vis Comput 1(3): 133–139CrossRefGoogle Scholar
  35. Sutton M, McNeill S, Helm J, Chao Y (2000) Advances in two-dimensional and three-dimensional computer vision. Photomechanics 77: 323–372CrossRefGoogle Scholar
  36. Tada H, Paris PC, Irwin GR (1985) The stress analysis of cracks handbook. Paris Productions Incorporated, St. LouisGoogle Scholar
  37. Thomas HAJ, Stevens R (1989) Aluminium titanate: a literature review. I: Microcracking phenomena. Br Ceram Trans J 88(4): 144–151Google Scholar
  38. Tsetsekou A (2005) A comparison study of tialite ceramics doped with various oxide materials and tialite–mullite composites: microstructural, thermal and mechanical properties. J Eur Ceram Soc 25(4): 335–348CrossRefGoogle Scholar
  39. Wang YQ, Sutton MA, Bruck HA, Schreier HW (2009) Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements. Strain 45(2): 160–178CrossRefGoogle Scholar
  40. Weininger H, Pasbst RF (1982) Crack resistance behavior of ceramic materials. In: Proceedings of the 4th European Conference on Fracture, p 84Google Scholar
  41. Williams ML (1957) On the stress distribution at the base of a stationary crack. ASME J Appl Mech 24: 109–114Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Paul Leplay
    • 1
    • 2
    • 3
  • Julien Réthoré
    • 1
  • Sylvain Meille
    • 2
  • Marie-Christine Baietto
    • 1
  1. 1.Université de Lyon, CNRS INSA-Lyon, LaMCoS UMR 5259VilleurbanneFrance
  2. 2.Université de Lyon, CNRS INSA-Lyon, MATEIS UMR 5510VilleurbanneFrance
  3. 3.Saint-Gobain CREECavaillonFrance

Personalised recommendations