Skip to main content
Log in

Identification of damage and cracking behaviours based on energy dissipation mode analysis in a quasi-brittle material using digital image correlation

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Characterizing the crack stability to predict the behaviour of ceramics designed for industrial use is a challenging issue. It requires accurate crack tip detection during the controlled crack propagation of notched bending tests. Different indirect methods are available, like for instance the compliance technique. Recently, techniques based on digital image correlation (DIC) have emerged: finite-element DIC (FE-DIC) with a finite element decomposition of the displacement field, integrated-DIC (I-DIC) based on Williams’ series decomposition of the displacement field and regularized-DIC (R-DIC) for mechanical constraints. These full-field techniques enable the quantification of the crack length and the stress intensity factor K I. In this paper, these four methods are compared in terms of measurements of crack lengths and stress intensity factors during a notched bending test. The tested material is a damageable quasi-brittle ceramic at room temperature. The non linearity of the stress-strain law of this microcraked ceramic results in a complex behaviour that is not captured by the compliance method during the bending test. Therefore the linear elastic compliance method leads to a different estimation of crack lengths and stress intensity factors compared to DIC methods. On the other hand, the R-DIC approach handles the non linear material constitutive behaviour. It allows a deeper analysis of the mechanical fields, the energy dissipation and the damage mechanisms during the crack propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Avril S, Bonnet M, Bretelle AS, Grediac M, Hild F, Ienny P, Latourte F, Lemosse D, Pagano S, Pagnacco E et al (2008) Overview of identification methods of mechanical parameters based on full-field measurements. Exp Mech 48(4): 381–402

    Article  Google Scholar 

  • Besnard G, Hild F, Roux S (2006) Finite-element displacement fields analysis from digital images: application to portevin–le châtelier bands. Exp Mech 46(6): 789–803

    Article  Google Scholar 

  • Bornhauser A, Kromp K, Pabst RF (1985) R-curve evaluation with ceramic materials at elevated temperatures by an energy approach using direct observation and compliance calculation of the crack length. J Mater Sci 20(7): 2586–2596

    Article  CAS  Google Scholar 

  • Bouquet M, Birbis JM, Quenisset JM (1990) Toughness assessment of ceramic matrix composites. Compos Sci Technol 37(1–3): 223–248

    Article  Google Scholar 

  • Bui HD, Germain P (1978) Mécanique de la rupture fragile. Masson Paris

  • Chen CH, Awaji H (2007) Temperature dependence of mechanical properties of aluminum titanate ceramics. J Eur Ceram Soc 27(1): 13–18

    Article  Google Scholar 

  • Chevalier J (1996) Etude de la propagation des fissures dans une zircone 3Y-TZP pour applications biomedicales. PhD thesis, INSA de Lyon

  • Garwood SJ, Robinson JN, Turner CE (1975) The measurement of crack growth resistance curves (r-curves) using the j integral. Int J Fract 11(3): 528–530

    Google Scholar 

  • Hamam R, Hild F, Roux S (2007) Stress intensity factor gauging by digital image correlation: application in cyclic fatigue. Strain 43(3): 181–192

    Article  Google Scholar 

  • Hamano K, Ohya Y, Nakagawa Z (1985) Crack propagation resistance of aluminium titanate ceramics. Int J High Technol Ceram 1(2): 129–137

    Article  CAS  Google Scholar 

  • Henninger C, Roux S, Hild F (2010) Enriched kinematic fields of cracked structures. Int J Solids Struct 1

  • Hild F, Roux S (2006) Digital image correlation: from displacement measurement to identification of elastic properties-a review. Strain 42(2): 69–80

    Article  Google Scholar 

  • Hild F, Roux S, Gras R, Guerrero N, Marante ME, Florez-Lopez J (2009) Displacement measurement technique for beam kinematics. Opt Lasers Eng 47(3–4): 495–503

    Article  Google Scholar 

  • Kim IJ, Gauckler LJ (2008) Excellent thermal shock resistant materials with low thermal expansion coefficients. J Ceram Process Res 9(3): 240–245

    Google Scholar 

  • Lawn BR, Marshall DB (1998) Nonlinear stress-strain curves for solids containing closed cracks with friction. J Mech Phys Solids 46(1): 85–113

    Article  Google Scholar 

  • Lemaître J, Chaboche JL (1988) Mecanique des Materiaux Solides 2nd edn. Dunod, Paris

  • Leplay P, Réthoré J, Meille S, Baietto M-C (2010) Damage law identification of a quasi-brittle ceramic from a bending test using digital image correlation. J Eur Ceram Soc 30: 2715–2725

    Article  CAS  Google Scholar 

  • Mazars J (1986) A description of micro- and macroscale damage of concrete structures. Eng Fract Mech 25(5–6): 729–737

    Article  Google Scholar 

  • Melendez-Martinez JJ, Jimenez-Melendo M, Dominguez-Rodriguez A, Wotting G (2001) High temperature mechanical behavior of aluminium titanate–mullite composites. J Eur Ceram Soc 21(1): 63–70

    Article  CAS  Google Scholar 

  • Peters WH, Ranson WF (1982) Digital imaging techniques in experimental stress analysis. Opt Eng 21(3): 427–431

    Google Scholar 

  • Rannou J, Limodin N, Réthoré J, Gravouil A, Ludwig W, Baietto-Dubourg M-C, Buffiere J-Y, Combescure A, Hild F, Roux S (2010) Three dimensional experimental and numerical multiscale analysis of a fatigue crack. Comput Methods Appl Mech Eng 199: 1307–1325

    Article  Google Scholar 

  • Réthoré J (2009) Optimal identification of mechanical properties from digital images. Int J Numer Methods Eng (submitted)

  • Réthoré J, Hild F, Roux S (2008) Extended digital image correlation with crack shape optimization. Int J Numer Methods Eng 73: 248–272

    Article  Google Scholar 

  • Réthoré J, Elguedj T, Simon P, Coret M (2009) On the use of nurbs functions for displacement derivatives measurement by digital image correlation. Exp Mech 50(7): 1099–1116

    Article  Google Scholar 

  • Réthoré J, Roux S, Hild F (2009) An extended and integrated digital image correlation technique applied to the analysis of fractured samples. Eur J Comput Mech 18: 285–306

    Google Scholar 

  • Rethore J, Roux S, Hild F (2011) Optimal and noise-robust extraction of fracture mechanics parameters from kinematic measurements. Eng Fract Mech 78(9): 1827–1845

    Article  Google Scholar 

  • Rice JR, Paris PC, Merkle JG (1973) Progress in flaw growth and fracture toughness testing. J Am Ceram Soc 536: 231–245

    Google Scholar 

  • Robert L, Nazaret F, Cutard T, Orteu JJ (2007) Use of 3-d digital image correlation to characterize the mechanical behavior of a fiber reinforced refractory castable. Exp Mech 47(6): 761–773

    Article  Google Scholar 

  • Roux S, Hild F (2006) Stress intensity factor measurements from digital image correlation: post-processing and integrated approaches. Int J Fract 140(1): 141–157

    Article  Google Scholar 

  • Roux S, Réthoré J, Hild F (2009) Digital image correlation and fracture: an advanced technique for estimating stress intensity factors of 2D and 3D cracks. J Phys D Appl Phys 42: 214004

    Article  Google Scholar 

  • Sakai M, Urashima K, Inagaki M (1983) Energy principle of elastic-plastic fracture and its application to the fracture mechanics of a polycrystalline graphite. J Am Ceram Soc 66(12): 868–874

    Article  Google Scholar 

  • Surrel Y (2004) Full-field optical methods for mechanical engineering: essential concepts to find ones way. Compos Test Model Identif 1: 21–23

    Google Scholar 

  • Sun Y, Pang JHL, Wong CK, Su F (2005) Finite element formulation for a digital image correlation method. Appl Opt 44(34): 7357–7363

    Article  Google Scholar 

  • Sutton MA, Wolters WJ, Peters WH, Ranson WF, McNeill SR (1983) Determination of displacements using an improved digital correlation method. Image Vis Comput 1(3): 133–139

    Article  Google Scholar 

  • Sutton M, McNeill S, Helm J, Chao Y (2000) Advances in two-dimensional and three-dimensional computer vision. Photomechanics 77: 323–372

    Article  Google Scholar 

  • Tada H, Paris PC, Irwin GR (1985) The stress analysis of cracks handbook. Paris Productions Incorporated, St. Louis

    Google Scholar 

  • Thomas HAJ, Stevens R (1989) Aluminium titanate: a literature review. I: Microcracking phenomena. Br Ceram Trans J 88(4): 144–151

    CAS  Google Scholar 

  • Tsetsekou A (2005) A comparison study of tialite ceramics doped with various oxide materials and tialite–mullite composites: microstructural, thermal and mechanical properties. J Eur Ceram Soc 25(4): 335–348

    Article  CAS  Google Scholar 

  • Wang YQ, Sutton MA, Bruck HA, Schreier HW (2009) Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements. Strain 45(2): 160–178

    Article  Google Scholar 

  • Weininger H, Pasbst RF (1982) Crack resistance behavior of ceramic materials. In: Proceedings of the 4th European Conference on Fracture, p 84

  • Williams ML (1957) On the stress distribution at the base of a stationary crack. ASME J Appl Mech 24: 109–114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Réthoré.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leplay, P., Réthoré, J., Meille, S. et al. Identification of damage and cracking behaviours based on energy dissipation mode analysis in a quasi-brittle material using digital image correlation. Int J Fract 171, 35–50 (2011). https://doi.org/10.1007/s10704-011-9624-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-011-9624-8

Keywords

Navigation