International Journal of Fracture

, Volume 167, Issue 2, pp 147–155 | Cite as

The resistance curve for subcritical cracks near the threshold

  • Haifeng Zhao
  • Dmitrii E. Makarov
  • Gregory J. Rodin
Original Paper


Thermodynamic analysis of brittle fracture specimens near the threshold developed by Rice (Thermodynamics of quasi-static growth of Griffith cracks, J Mech Phys Solid 26:61–78, 1978) is extended to specimens undergoing microstructural changes. The proposed extension gives rise to a generalization of the threshold concept that mirrors the way the resistance curve generalizes the fracture toughness. In the absence of experimental data, the resistance curve near the threshold is constructed using a basic lattice model.


Sub-critical crack growth Threshold Resistance curve 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alava MJ, Nukala PKVV, Zapperi S (2006) Statistical models of fracture. Adv Phys 55(3–4): 349–476CrossRefGoogle Scholar
  2. Bell GI (1978) Models for specific adhesion of cells to cells. Science 200: 618–627CrossRefGoogle Scholar
  3. Bonamy D (2009) Intermittency and roughening in the failure of brittle heterogeneous materials. J Phys D Appl Phys 42(21): 214014CrossRefGoogle Scholar
  4. Broek D (1982) Elementary engineering fracture mechanics. Kluwer, DordrechtGoogle Scholar
  5. Case ED, Smyth JR, Hunter JRO (1983) Microcrack healing during the temperature cycling of single phase ceramics. Frac Mech Ceramics 5: 507–530 (Plenum Press, New York)Google Scholar
  6. Chan KS, Page RA (1992) Origin of the creep-crack growth threshold in a glass-ceramic. J Am Ceramic Soc 75: 603–612CrossRefGoogle Scholar
  7. Cook RF (1999) Environmentally-controlled non-equilibrium crack propagation in ceramics. Mat Sci Eng A 260: 29–40CrossRefGoogle Scholar
  8. Eom K, Makarov DM, Rodin GJ (2005) Theoretical studies of the kinetics of mechanical unfolding of cross-linked polymer chains and their implications for single-molecule pulling experiments. Phys Rev E 71: 021904-1–021904-10Google Scholar
  9. Evans AG, Charles EA (1977) Strength recovery by diffusive crack healing. Acta Metallurgica 25: 919–927CrossRefGoogle Scholar
  10. Gupta TK (1975) Crack healing in thermally shocked MgO. J Am Ceramic Soc 58(3–4): 143–143CrossRefGoogle Scholar
  11. Jacobsen S, Marchan J, Boisvert L (1996) Effect of cracking and healing on chloride transport in OPC concrete. Cement Concrete Res 26(6): 869–881CrossRefGoogle Scholar
  12. Jud K, Kausch HH (1979) Load transfer through chain molecules after interpenetration at interfaces. Polymer Bull 1: 697–707CrossRefGoogle Scholar
  13. Jud K, Kausch HH, Williams JG (1981) Fracture mechanics studies of crack healing and welding of polymers. J Mat Sci 16: 204–210CrossRefGoogle Scholar
  14. Lange FF, Gupta TK (1970) Crack healing by heat treatment. J Am Ceramic Soc 53(1): 54–55CrossRefGoogle Scholar
  15. Lawn BR (1993) Fracture of brittle solids. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  16. Makarov DM, Hansma PK, Metiu H (2001) Kinetic monte-carlo simulation of titin unfolding. J Chem Phys 114: 9663–9673CrossRefGoogle Scholar
  17. Marx R, Jungwirth F, Walter P-O (2004) Threshold intensity factors as lower boundaries for crack propagation in ceramics. BioMed Eng OnLine 3: 41CrossRefGoogle Scholar
  18. Metiu H, Lu YT, Zhang ZY (1992) Epitaxial-growth and the art of computer-simulations. Science 255: 1088–1092CrossRefGoogle Scholar
  19. Rice JR (1978) Thermodynamics of quasi-static growth of Griffith cracks. J Mech Phys Solids 26(2): 61–78CrossRefGoogle Scholar
  20. Schapery RA (1989) On the mechanics of crack closing and bonding in linear viscoelastic media. Int J Frac 39: 163–189CrossRefGoogle Scholar
  21. Smith DL, Evans B (1984) Diffusional crack healing in quartz. J Geophys Res 89(B6): 4125–4135CrossRefGoogle Scholar
  22. Vandembroucq D, Charles Y, Hild F, Roux S (2004) Material-independent crack arrest statistics. J Mech Phys Solids 52(7): 1651–1669CrossRefGoogle Scholar
  23. Voter AF (1986) Classically exact overlayer dynamics—diffusion of rhodium clusters on Rh(100). Phys Rev B 34: 6819–6829CrossRefGoogle Scholar
  24. Wan KT, Aimard N, Lathabai S, Horn RG, Lawn BR (1990) Interfacial energy-states of moisture-exposed cracks in mica. J Mat Res 5(1): 172–182CrossRefGoogle Scholar
  25. Wan KT, Lawn BR (1990) Surface forces at crack interfaces in mica in the presence of capillary condensation. Acta Metallurgica et Materialia 38(11): 2073–2083CrossRefGoogle Scholar
  26. Wiederhorn SM, Townsend PR (1970) Crack healing in glass. J Am Ceramic Soc 53(9): 486–489CrossRefGoogle Scholar
  27. Wool RP, O’Connor KM (1981) A theory of crack healing in polymers. J Appl Phys 52(10): 5953–5963CrossRefGoogle Scholar
  28. Zhang ZY, Haug K, Metiu H (1990) Exact classical simulation of hydrogen migration on Ni(100)—the role of fluctuations, recrossing, and multiple jumps. J Chem Phys 93: 3614–3634CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Haifeng Zhao
    • 1
    • 2
  • Dmitrii E. Makarov
    • 3
    • 4
  • Gregory J. Rodin
    • 1
    • 2
    • 4
  1. 1.Department of Aerospace Engineering and Engineering MechanicsThe University of Texas at AustinAustinUSA
  2. 2.Center for Mechanics of Solids, Structures, and MaterialsThe University of Texas at AustinAustinUSA
  3. 3.Department of Chemistry and BiochemistryThe University of Texas at AustinAustinUSA
  4. 4.Institute for Computational Engineering and SciencesThe University of Texas at AustinAustinUSA

Personalised recommendations