International Journal of Fracture

, Volume 167, Issue 1, pp 111–118 | Cite as

On Estimation of Maximum Thickness of Structural Elements to Prevent Cleavage Fracture

Letters in Fracture and Micromechanics


The European Standard EN 1993-1-10 contains design guidance to determine the maximum permitted thickness of the structural element made of steel. The element thickness should be smaller than the maximum value to avoid brittle fracture. The standard includes a table where the maximum thicknesses are listed for different steel grades, temperatures and loading. However, no theoretical justification for these recommendations is given. We derive a simple formula for the maximum permitted thickness that includes, in addition to the parameters in European Standard, the following parameters or quantities: the secondary stresses following from the welding process or temperature gradients, the shape and size of the structural element, the tensile properties of the material, the fracture toughness, the probability of fracture, and the in-plane constraint parameter, e.g. the Q-parameter.


design guidance maximum permitted thickness of structural element 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. American Petroleum Institute, API 579 (2000): Recommended practice for fitness-for-service. Washington DCGoogle Scholar
  2. ASTM ASTM E 399: (2002), Standard Test Method for Plain-Strain Fracture Toughness of Metallic Materials, ASTM International. doi: 10.1520/E0399-09E01
  3. ASTM E1820-05, (2005), “Standard Test Method for Measurement of Fracture Toughness,” Annual Book of ASTM Standards, Vol. 03.01, ASTM International, West Conshohocken, PA, doi: 10.1520/E1820-05
  4. ASTM E 1921-05, (2005) Standard Test Method for Determination of Reference Temperature, T o, for Ferritic Steels inthe Transition Range Google Scholar
  5. EN 1993-1-10 (2003), Eurocode 3: Design of steel structures – Part 1-10: Material toughness and through-thickness properties, European Committee for Standardization, Management Centre, rue de Stassart, 36, B-1050 Brussels.Google Scholar
  6. FITNET Report, (2006), (European Fitness-for-service Network). Edited by M.Kocak, S.Webster, J.J.Janosch, R.A.Ainsworth, R.Koers, Contract No. G1RT-CT-2001-05071,Google Scholar
  7. Neimitz A., Graba, M., Gałkiewicz J. (2007), ”An alternative formulation of the Ritchie-Knott-Rice local fracture criterion”, Engineering Fracture Mechanics, 74, 8, str. 1308-1322,Google Scholar
  8. O’Dowd N.P. (1995) ”Applications of two parameter approaches in elastic-plastic fracture mechanics”. Engineering Fracture Mechanics 52(3): 445–465CrossRefGoogle Scholar
  9. O’Dowd, N.P., Shih, (1991)C.F., ,,Family of crack-tip fields characterized by a triaxiality parameter-I. Structure of fields”, Journal of the Mechanics and Physics of Solids, Tom 39, str. 898-1015.Google Scholar
  10. R6. (2001), Assessment of the Integrity of Structures Containing Defects, Rev. 4. – Gloucester: British Energy Generation Ltd, UK.Google Scholar
  11. Sherry, A.H., Wilkes M.A., Beardsmore D.W., Lidbury D.P.G., (2005a), “Material constraint parameters for the assessment of shallow defects in structural components – Part I: Parameter solutions”, Engineering Fracture Mechanics, , str. 2373-2395Google Scholar
  12. Sherry A.H., Hooton D.G., Beardsmore D.W., Lidbury D.P.G. (2005b) “Material constraint parameters for the assessment of shallow defects in structural components – Part II: constraint – based assessment of shallow cracks. Engineering Fracture Mechanics 72: 2396–2415CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Kielce University of TechnologyKielcePoland
  2. 2.Rautaruukki OYJHämeenlinnaFinland

Personalised recommendations