International Journal of Fracture

, Volume 166, Issue 1–2, pp 105–120 | Cite as

Stationary straight cracks in quasicrystals

Original Paper


Stationary straight cracks in quasicrystals in linear elastic setting are under scrutiny. The analysis is developed by using Stroh formalism which is modified to account for a totally degenerate eigenvalue problem: in fact, the fundamental matrix of the governing equations of motion admits a repeated eigenvalue corresponding to a single eigenvector. Cases of a semi-infinite rectilinear crack loaded along its margins and a crack of finite length under remote loading conditions are considered. Standard and phason stresses display square-root singularities at crack tip. The latter stresses represent peculiar microstructural inner actions occurring in quasicrystals and are determined by rearrangements assuring quasi-periodicity of the atomic tiling—modes described by a vector field, called phason field, collecting the local degrees of freedom exploited by the atoms within the material elements. Energy release rate increases with the coupling parameter between displacement and phason fields.


Fracture Stationary crack Quasicrystals Phonon and phason stresses Stroh formalism Degenerate eigenvalue problem Analytic functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amazit Y, Fischer M, Perrin B, Zarembowitch A (1995) Ultrasonic investigations of large single AlPdMn icosahedral quasicrystals. In: Janot C, Mossieri R (eds) (Herausgeber), Proceedings of the 5th international conference on quasicrystals, S. 584–587. World Scientific, SingaporeGoogle Scholar
  2. Boldrini C, Viola E (2008) Crack energy density of a piezoelectric material under general electromechanical loading. Theor Appl Fract Mech 49(3): 321–333CrossRefGoogle Scholar
  3. Broberg KB (1999) Cracks and fracture. Cambridge University Press, CambridgeGoogle Scholar
  4. de Boissieu M, Boudard M, Hennion B, Bellissent R, Kycia S, Goldman A, Janot C, Audier M (1995) Diffuse scattering and phason elasticity in the AlPdMn icosahedral phase. Phys Rev Lett 75: 89–92CrossRefADSPubMedGoogle Scholar
  5. Ding D-H, Yang W, Hu C, Wang R (1993) Generalized elasticity theory of quasicrystals. Phys Rev B 48(10): 7003CrossRefADSGoogle Scholar
  6. Freund LB (1990) Dynamic fracture mechanics. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  7. Gakhov FD (1996) Boundary value problems. Pergamon Press, New YorkGoogle Scholar
  8. Gao CF, Kessler H, Balke H (2003) Crack problems in magnetoelectroelastic solids. Part I: exact solution of a crack. Int J Eng Sci 41: 969–981CrossRefMathSciNetGoogle Scholar
  9. Gao Y, Zhao YT, Zhao BS (2007) Boundary value problems of holomorphic vector functions in 1D QCs. Physica B Condens Matter 394(1): 56–61CrossRefADSGoogle Scholar
  10. Gentilini C, Piva A, Viola E (2004) On crack propagation in orthotropic media for degenerate states. Eur J Mech A/Solids 23: 247–258MATHCrossRefGoogle Scholar
  11. Hirsh MW, Smale S (1974) Differential equations, dynamic systems and linear algebra. Academic Press, New YorkGoogle Scholar
  12. Hu C, Wang R, Ding D-H (2000) Symmetry groups, physical property tensors, elasticity and dislocations in quasicrystals. Rep Prog Phys 63: 1–39CrossRefMathSciNetADSGoogle Scholar
  13. Jeong H-C, Steinhardt PJ (1993) Finite-temperature elasticity phase transition in decagonal quasicrystals. Phys Rev B 48: 9394–9403CrossRefADSGoogle Scholar
  14. Letoublon A, de Boissieu M, Boudard M, Mancini L, Gastaldi J, Hennion B, Caudron R, Bellissent R (2001) Phason elastic constants of the icosahedral Al-Pd-Mn phase derived from diffuse scattering measurements. Phil Mag Lett 81: 273–283CrossRefADSGoogle Scholar
  15. Li X-F, Fan T-Y (1998) New method for solving elasticity problems of some planar quasicrystals and solutions. Chin Phys Lett 15: 278–280CrossRefADSGoogle Scholar
  16. Li X-F, Fan T-Y, Sun Y-F (1999) A decagonal quasicrystal with a Griffith crack. Phil Mag A 79(8): 1943–1952ADSGoogle Scholar
  17. Lubensky TC, Ramaswamy S, Toner J (1985) Hydrodynamics of icosahedral quasicrystals. Phys Rev B 32: 7444–7452CrossRefADSGoogle Scholar
  18. Mariano PM (2006) Mechanics of quasi-periodic alloys. J Nonlinear Sci 16: 45–77MATHCrossRefMathSciNetADSGoogle Scholar
  19. Mariano PM (2008) Cracks in complex bodies: covariance of tip balances. J Nonlinear Sci 18: 99–141MATHCrossRefMathSciNetADSGoogle Scholar
  20. Muskhelishvili NI (1953) Some basic problems of the mathematical theory of elasticity. Noordhoff, GroningenMATHGoogle Scholar
  21. Piva A, Radi E (1991) Elastodynamic local fields for a crack running in an orthotropic medium. J Appl Mech 58: 982–987MATHCrossRefGoogle Scholar
  22. Piva A, Viola E (1988) Crack propagation in an orthotropic medium. Eng Fract Mech 29: 535–548CrossRefGoogle Scholar
  23. Radi E, Mariano PM (2010) Dynamic stedy-state crack propagation in planar quasicrystal with fivefold symmetry. Math Met Appl Sci. doi:
  24. Rochal SB, Lorman VL (2002) Minimal model of the phonon-phason dynamics in icosahedral quasicrystals and its application to the problem of internal friction in the i-AlPbMn alloy. Phys Rev B 66(1–9): 144204CrossRefADSGoogle Scholar
  25. Sih GC, Liebowitz H (1968) Fracture: an advanced treatise. Academic Press, New YorkGoogle Scholar
  26. Stroh AN (1958) Dislocations and cracks in anisotropic elasticity. Philos Mag 3: 625–646MATHCrossRefMathSciNetADSGoogle Scholar
  27. Stroh AN (1962) Steady state problems in anisotropic elasticity. J Math Phys 41: 77–103MATHMathSciNetGoogle Scholar
  28. Suo Z, Kuo CM, Barnett DM, Willis JR (1992) Fracture mechanics for piezoelectric ceramics. J Mech Phys Solids 40(4): 739–765MATHCrossRefMathSciNetADSGoogle Scholar
  29. Tanuma K (2007) Stroh formalism and Rayleigh waves. J Elast 89: 5–154MATHCrossRefMathSciNetGoogle Scholar
  30. Ting TCT (1996) Anisotropic elasticity. Theory and applications. Oxford University Press, NYMATHGoogle Scholar
  31. Ting TCT, Hwu C (1998) Sextic formalism in anisotropic elasticity for almost non-semisimple matrix N. Int J Solids Struct 24: 65–76CrossRefGoogle Scholar
  32. Viola E, Piva A, Radi E (1989) Crack propagation in an orthotropic medium under general loading. Eng Fract Mech 34: 1155–1174CrossRefGoogle Scholar
  33. Wang BL, Mai YW (2003) Crack tip field in piezoelectric/ piezomagnetic media. Eur J Mech A/Solids 22(4): 591–602MATHCrossRefGoogle Scholar
  34. Wang YM, Ting TCT (1997) The Stroh formalism for anisotropic materials that possess an almost extraordinary degenerate matrix N. Int J Solids Struct 34: 401–413MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Di.S.M.I., Università di Modena e Reggio EmiliaReggio EmiliaItaly
  2. 2.DICeAUniversità di FirenzeFirenzeItaly

Personalised recommendations