Advertisement

International Journal of Fracture

, Volume 165, Issue 2, pp 175–188 | Cite as

Criterion for initiation of cracks under mixed-mode I + III loading

  • Bisen Lin
  • M. E. Mear
  • K. Ravi-Chandar
Original Paper

Abstract

The initiation of crack growth under a combination of opening and anti-plane shearing mode loading is considered in this paper. It is shown that such cracks do not grow through a continuous evolution of the crack surface. Rather, an abrupt fragmentation or segmentation of the crack front is generated. Through experimental observations and a theoretical model, we postulate a relationship between the scale of the fragmentation and the mode mix.

Keywords

Fracture Three-dimensional loading Crack front fragmentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amestoy M, Leblond JB (1992) Crack paths in plane situations: II detailed form of the expansion of the stress intensity factors. Int J Solids Struct 29: 465–501MATHCrossRefMathSciNetGoogle Scholar
  2. Bonamy D, Ravi-Chandar K (2003) Interaction of stress waves with propagating cracks. Phys Rev Lett 91 (Art. No. 235502)Google Scholar
  3. Bonamy D, Ravi-Chandar K (2005) Dynamic crack response to a localized shear pulse perturbation in brittle amorphous materials: on crack surface roughening. Int J Fract 134(2005): 1–22CrossRefGoogle Scholar
  4. Cooke ML, Pollard DD (1996) Fracture propagation paths under mixed mode loading within rectangular blocks of polymethyl methacrylate. J Geophys Res 101: 3387–3400CrossRefADSGoogle Scholar
  5. Davenport JCW, Smith DJ (1993) A study of superimposed fracture modes I, II and III on PMMA. Fatigue Fract Engng Mater Struct 16: 1125–1133CrossRefGoogle Scholar
  6. Gao H (1992) Three-dimensional slightly nonplanar cracks. J Appl Mech 59: 335–343CrossRefGoogle Scholar
  7. Gao H, Rice JR (1986) Shear stress intensity factors for a planar crack with slightly curved front. J Appl Mech 53: 774MATHCrossRefGoogle Scholar
  8. Goldstein RV, Salganik RL (1974) Brittle fracture of solids with arbitrary cracks. Int J Frac 10: 507–523CrossRefGoogle Scholar
  9. Hodogdon JA, Sethna JP (1993) Derivation of a general 3-dimensional crack-propagation law—A generalization of the principle of local symmetry. Phys Rev B 47: 4831–4840CrossRefADSGoogle Scholar
  10. Hull D (1993) Tiltig cracks: the evolution of fracture surface topology in brittle solids. Int J Fract 62: 119–138CrossRefADSGoogle Scholar
  11. Hull D (1995) The effect of mixed mode I/III on crack evolution in brittle solids. Int J Fract 70: 59–79CrossRefGoogle Scholar
  12. Knauss WG (1970) An observation of crack propagation in anti-plane shear. Int J Frac 6: 183–187Google Scholar
  13. Lazarus V, Buchholz FG, Fulland M, Wiebesiek J (2008) Comparison of predictions by mode II or mode III criteria on crack front twisting in three or four point bending experiments. Int J Fract 153: 141–151CrossRefGoogle Scholar
  14. Lazarus V, Leblond JB (2001a) Crack front rotation and segmentation in mixed mode I + III or I + II + III. Part I: calculation of stress intensity factors. J Mech Phys Solids 49: 1399–1420MATHCrossRefADSGoogle Scholar
  15. Lazarus V, Leblond JP (2001b) Crack front rotation and segmentation in mixed mode I + III or I + II + III. Part II: comparison with experiments. J Mech Phys Solids 49: 1421–1443CrossRefADSGoogle Scholar
  16. Li S, Mear ME (1998) Singularity-reduced integral equations for displacement discontinuities in three-dimensional linear elastic media. Int J Fract 93: 87–114CrossRefGoogle Scholar
  17. Li S, Mear ME, Xiao L (1998) Symmetric weak-form integral equation method for three dimensional fracture analysis. Comput Methods Appl Mech Engrg 151: 435–459MATHCrossRefMathSciNetGoogle Scholar
  18. Movchan AB, Gao H, Willis JR (1998) On perturbations of plane cracks. Int J Solids Struct 35: 3419–3453MATHCrossRefMathSciNetGoogle Scholar
  19. Murakami Y (1987) Stress intensity factors handbook. Pergamon, OxfordGoogle Scholar
  20. Pollard DD, Segall PE, Delaney PT (1982) Formation and interpretation of dilatant echelon cracks. Geol Soc Am Bull 93: 1291–1303CrossRefGoogle Scholar
  21. Raju IS, Newman JC (1977) Three-dimensional finite-element analysis of finite-thickness fracture specimens, Technical Report NASA TND-8414, NASA Langley Research Center, Hampton, VA 23665Google Scholar
  22. Schroth JG, Hirth JP, Hoagland RG, Rosenfeld AR (1987) Combined mode-I-mode-III fracture of a high strength low alloy steel. Met Trans 18A: 1061–1072Google Scholar
  23. Smekal A (1953) Zum Bruchvogang bei sprodem Stoffrerhalten unter ein und mehrachsiegen Beanspringen. Osterr Ing Arch 7: 49–70Google Scholar
  24. Sommer E (1969) Formation of fracture ‘lances’ in glass. Eng Frac Mech 1: 539–546CrossRefGoogle Scholar
  25. Sukumar N, Moes N, Moran B, Belytschko T (2000) Extended finite element method for three-dimensional crack modeling. Int J Numer Methods Engrg 48: 1549–1570MATHCrossRefGoogle Scholar
  26. Xu G, Bower AF, Ortiz M (1994) An analysis of non-planar crack growth under mixed mode loading. Int J Solids Struct 31: 2167–2193MATHCrossRefGoogle Scholar
  27. Yates JR, Miller KJ (1989) Mixed-mode (I–III) fatigue thresholds in a forging steel. Fatigue Fract Eng Mater and Struct 12: 259–270CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Center for Mechanics of Solids, Structures and MaterialsThe University of Texas at AustinAustinUSA

Personalised recommendations