International Journal of Fracture

, Volume 162, Issue 1–2, pp 127–136 | Cite as

Dynamic fracture kinetics, influence of temperature and microstructure in the atomistic model of aluminum

  • Alexey Kuksin
  • Genri Norman
  • Vladimir Stegailov
  • Alexey Yanilkin
  • Petr Zhilyaev
Original Paper


Microscopic mechanisms and kinetics of dynamic fracture of crystalline materials are analyzed. The work is based on the molecular dynamics modeling and simulation within the embedded atom method model for interatomic interactions in metals. An attempt is made to present the results of molecular dynamics calculations as kinetic constitutive relations for the description of the elementary processes of fracture. The kinetics of melting, rates of nucleation and growth of voids are evaluated separately for a range of pressures and temperatures. The influence of the material microstructure (grain boundaries, dislocation subsystem, nanosize pores and inclusions) on failure mechanisms is studied. An effect of melting in rarefaction waves on the fracture kinetics and the spall strength of monocrystalline and polycrystalline metals is discussed. A comparison with the shock wave experimental data on the spall strength is presented.


Molecular dynamics Spall strength Aluminum Voids Nucleation and growth Microstructure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antoun T, Seaman L, Curran DR, Kanel GI, Razorenov SV, Utkin AV (2003) Spall fracture. Springer, New YorkGoogle Scholar
  2. Ashkenazy Y, Averback RS (2005) Shock induced amorphization as the onset of spall. Appl Phys Lett 86: 051907CrossRefADSGoogle Scholar
  3. Baidakov VG, Protsenko SP (2005) Singular point of a system of Lennard-Jones particles at negative pressures. Phys Rev Lett 95: 015701CrossRefPubMedADSGoogle Scholar
  4. Barbee TW, Seaman L, Crewdson R, Curran DR (1972) Dynamic fracture criteria for ductile and brittle metals. J Materials 7: 393–401CrossRefGoogle Scholar
  5. Belak J (1998) On the nucleation and growth of voids at high strain-rates. J Comp -Aided Mater Des 5: 193–206CrossRefADSGoogle Scholar
  6. Belak J (2002) Multi-scale applications to high strain-rate dynamic fracture. J Comp -Aided Mater Des 9: 165–172CrossRefADSGoogle Scholar
  7. Besold G, Mouritsen OG (1994) Grain-boundary melting: a Monte Carlo study. Phys Rev B 50: 6573–6576CrossRefADSGoogle Scholar
  8. Chen X, Asay JR, Dwivedi SK, Field DP (2006) Spall behavior of aluminum with varying microstructures. J Appl Phys 99: 023528CrossRefADSGoogle Scholar
  9. Czarnota C, Mercier S, Molinari A (2006) Modelling of nucleation and void growth in dynamic pressure loading, application to spall test on tantalum. Int J Fract 141: 177–194CrossRefGoogle Scholar
  10. Davila LP, Erhart P, Bringa EM, Meyers MA, Lubarda VA, Schneider MS, Becker R, Kumar M (2005) Atomistic modeling of shock-induced void collapse in copper. Appl Phys Lett 86: 161902CrossRefADSGoogle Scholar
  11. Debenedetti PG (1996) Metastable liquids, concepts and principles. Princeton University Press, PrincetonGoogle Scholar
  12. Dekel E, Eliezer S, Henis Z, Moshe E, Ludmirsky A, Goldberg IB (1998) Spallation model for the high strain rates range. J Appl Phys 84(9): 4851–4858CrossRefADSGoogle Scholar
  13. Dremov V, Petrovtsev A, Sapozhnikov P, Smirnova M, Preston DL, Zocher MA (2006) Molecular dynamics simulations of the initial stages of spall in nanocrystalline copper. Phys Rev B 74: 144110CrossRefADSGoogle Scholar
  14. Farkas D, Willemann M, Hyde B (2005) Atomistic mechanisms of fatigue in nanocrystalline metals. Phys Rev Lett 94: 165502CrossRefPubMedADSGoogle Scholar
  15. Frederiksen SL, Jacobsen KW, Schiotz J (2004) Simulations of intergranular fracture in nanocrystalline molybdenum. Acta Mater 52: 5019–5029CrossRefGoogle Scholar
  16. Grady DE (1988) The spall strength of condensed matter. J Mech Phys Solids 36(3): 353–384CrossRefADSGoogle Scholar
  17. Kanel GI, Razorenov SV, Baumung K, Singer J (2001) Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point. J Appl Phys 90: 136–143CrossRefADSGoogle Scholar
  18. Kanel GI, Razorenov SV, Fortov VE (2004a) Shock-wave compression and tension of solids at elevated temperatures: superheated crystal states, pre-melting, and anomalous growth of the yield strength. J Phys Condens Matter 16: S1007–S1016CrossRefADSGoogle Scholar
  19. Kanel GI, Razorenov SV, Fortov VE (2004b) Shock-wave phenomena and the properties of condensed matter. Springer, New YorkGoogle Scholar
  20. Kelchner CL, Plimpton SJ, Hamilton JC (1998) Dislocation nucleation and defect structure during surface indentation. Phys Rev B 58: 11085CrossRefADSGoogle Scholar
  21. Kuksin A Yu, Norman GE, Stegailov VV, Yanilkin AV et al (2007a) Modeling of al crystal fracture under high-rate strain based on atomistic simulations. In: Furnish MD, Elert M (eds) Shock compression of condensed matter-2007, volume 955. American Institute of Physics, New York, pp 317–320Google Scholar
  22. Kuksin A Yu, Norman GE, Stegailov VV, Yanilkin AV (2007b) Surface melting of superheated crystals. atomistic simulation study. Comput Phys Commun 177(1–2): 34–37CrossRefADSGoogle Scholar
  23. Kuksin A Yu, Norman GE, Stegailov VV (2007c) The phase diagram and spinodal decomposition of metastable states of lennard-jones system. High Temp 45(1): 37–48CrossRefGoogle Scholar
  24. Liu X-Y, Wei Xu, Foiles SM, Adams JB (1998) Atomistic studies of segregation and diffusion in Al-Cu grain boundaries. Appl Phys Lett 72(13): 1578CrossRefADSGoogle Scholar
  25. Lubarda VA, Shneider MS, Kalantar DH, Remington BA, Meyers MA (2004) Void growth by dislocation emission. Acta Mater 52: 1397–1408CrossRefGoogle Scholar
  26. Mishin Y, Farkas D, Mehl MJ, Papaconstantopoulos DA (1999) Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys Rev B 59(5): 3393–3407CrossRefADSGoogle Scholar
  27. Moshe E, Eliezer S, Henis Z, Werdiger M, Dekel E, Horovitz Y, Maman S, Goldberg IB, Eliezer D (2000) Experimental measurment of the strength of metals approaching the theoretical limit predicted by the equation of state. Appl Phys Lett 76(12): 1555CrossRefADSGoogle Scholar
  28. Norman GE, Stegailov VV (2004) Simulation of ideal crystal superheating and decay. Mol Simul 30(9): 397–406MATHCrossRefGoogle Scholar
  29. Paisley D, Warnes R, Kopp R (1992) Laser-driven flat plate impacts to 100 gpa with subnanosecond pulse duration and resolution for material property studies. In: Schmidt SC, Dick RD, Forbes JW, Tasker DG (eds) Shock compression of condensed matter-1991. Elsevier, New York, p 825Google Scholar
  30. Plimpton SJ (1995) Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 117:1–19, URL Google Scholar
  31. Seppälä ET, Belak J, Rudd RE (2005) Three-dimensional molecular dynamics simulations of void coalescence during dynamic fracture of ductile metals. Phys Rev B 71: 064112CrossRefADSGoogle Scholar
  32. Skripov VP (1974) Metastable liquids. Wiley, New YorkGoogle Scholar
  33. Srinivasan SG, Baskes MI, Wagner GJ (2007) Atomistic simulations of shock induced microstructural evolution and spallation in single crystal nickel. J Appl Phys 101: 043504CrossRefADSGoogle Scholar
  34. Starikov SV (2008) Melting line of Al. (unpublished)Google Scholar
  35. Zhurkov SN (1965) Kinetic concept of the strength of solids. Int J Fract Mech 1(4): 311–322Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Alexey Kuksin
    • 1
    • 2
  • Genri Norman
    • 1
    • 2
  • Vladimir Stegailov
    • 1
    • 2
  • Alexey Yanilkin
    • 1
    • 2
  • Petr Zhilyaev
    • 1
    • 2
  1. 1.Joint Institute for High Temperatures of Russian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyState UniversityDolgoprudnyRussia

Personalised recommendations