The effect of aluminum alloying on ductile-to-brittle transition in Hadfield steel single crystal

  • E. G. Astafurova
  • Yu. I. Chumlyakov
  • H. J. Maier
Original Paper


The ductile-to-brittle transition (DBT) in Fe-13Mn-1.3C (Hadfield steel, I) and Fe-13Mn-2.7 Al-1.3C (Hadfield steel, II) (wt.%) single crystals oriented along \({[011], [{\bar{{1}}}44]}\), and [\({\bar{{1}}11}\)] directions was investigated under tension in the temperature interval of 77 to 673 K. The DBT temperature interval was found to be independent of single crystal orientation. The DBT temperatures were estimated (1) as the mean value between the temperature corresponding to the minimum crystal ductility and the one coinciding with the onset of the plateau of the \({\varepsilon}\)(T)-dependence (TDBT1); and (2) as the temperature where the volume fraction of brittle failure on the fracture surfaces was 50% (TDBT2). The DBT temperatures estimated this way, do not coincide for both steels. Mechanical twinning has been reported as the primary reason for the occurrence of the DBT in austenitic high-carbon Hadfield steel and appears to account for the difference in DBT temperatures as well. Alloying with aluminum partially suppresses twinning in steel (II). Twinning sets in only after a certain amount of dislocation slip, but still influences the fracture mechanism of steel (II).


Ductile-to-brittle transition Hadfield steel Slip Twinning 


  1. Adler PH, Olson GB, Owen WS (1986) Strain hardening of Hadfield manganese steel. Metall Trans A 17: 1725–1737CrossRefGoogle Scholar
  2. Astafurova EG, Tukeeva MS, Chumlyakov YI (2007a) The effect of aluminum alloying on strength properties and deformation mechanisms of the <123> Hadfield steel single crystals. Russ Phys J 50: 959–963CrossRefGoogle Scholar
  3. Astafurova EG, Kireeva IV, Chumlyakov YI, Maier HJ, Sehitoglu H (2007b) The influence of orientation and aluminum content on the deformation mechanisms of Hadfield steel single crystals. Int J Mat Res 98: 144–149Google Scholar
  4. Berner R, Kronmüller H (1965) Plastische verformung von einkristallen, moderne probleme der metallphysik. Springer, BerlinGoogle Scholar
  5. Canadinc D, Sehitoglu H, Maier HJ, Chumlyakov YI (2005) Strain hardening behavior of aluminum alloyed Hadfield steel single crystals. Acta Mat 53: 1831–1842CrossRefGoogle Scholar
  6. Christian JW, Mahajan S (1995) Deformation twinning. Prog Mater Sci 39: 1–157CrossRefGoogle Scholar
  7. Chumlyakov YuI, Kireeva IV, Korotaev AD, Litvinova EI, Zuev YuL (1996) Mechanisms of plastic deformation, hardening, and fracture in single crystals of nitrogen-containing austenitic stainless steels. Russ Phys J 39(3): 189–210CrossRefGoogle Scholar
  8. Dastur YN, Leslie WC (1981) Mechanism of work hardening in Hadfield manganese steel. Metall Trans 12A: 749–759Google Scholar
  9. Müllner P, Solenthaler S, Uggowitzer PJ, Speidel MO (1994) Brittle fracture in austenitic steel. Acta Metal Mater 42: 2211–2217CrossRefGoogle Scholar
  10. Müllner P, Solenthaler S (1997) On the effect of deformation twinning on defect densities. Mater Sci Ing A 230: 107–115CrossRefGoogle Scholar
  11. Müllner P (1997) On the ductile to brittle transition in austenitic steel. Mater Sci Ing A 234(236): 94–97CrossRefGoogle Scholar
  12. Owen WS, Grujicic M (1999) Strain aging of austenitic Hadfield manganese steel. Acta Mater 47: 111–126CrossRefGoogle Scholar
  13. Panfilov P, Yermakov A (2004) On brittle fracture in polycrystalline iridium. J Mater Sci 39: 4543–4552CrossRefADSGoogle Scholar
  14. Raghavan KS, Sastri AS, Marcinkowski MJ (1969) Nature of work-hardening behavior in Hadfield’s manganese steel. Trans Metall Soc AIME 245: 1569–1575Google Scholar
  15. Riedel H (1993) Fracture mechanisms. In: Cahn RW, Haasen P, Kramer EJ (eds) Materials science and technology: a comprehensive treatment. Weinheim, New York, pp 565–634Google Scholar
  16. Tomota Y, Xia Y, Inoue K (1998a) Mechanism of low temperature brittle fracture in high nitrogen bearing austenitic steel. Acta Mater 46: 1577–1587CrossRefGoogle Scholar
  17. Tomota Y, Nakano J, Xia Y, Inoue K (1998b) Unusual strain rate dependence of low temperature fracture behavior in high nitrogen bearing austenitic steels. Acta Mater 46: 3099–3108CrossRefGoogle Scholar
  18. Zuidema BK, Subramanyam DK, Leslie WC (1987) Effect of aluminum on the work hardening and wear resistance of Hadfield manganese steel. Metall Trans 18: 1629–1639CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • E. G. Astafurova
    • 1
  • Yu. I. Chumlyakov
    • 2
  • H. J. Maier
    • 3
  1. 1.Laboratory of Physical Materials ScienceInstitute of Strength Physics and Materials Science SB RASTomskRussia
  2. 2.Laboratory of Physics of Plasticity and StrengthSiberian Physical Technical InstituteTomskRussia
  3. 3.Lehrstuhl f. Werkstoffkunde (Materials Science)University of PaderbornPaderbornGermany

Personalised recommendations