Skip to main content
Log in

The effect of aluminum alloying on ductile-to-brittle transition in Hadfield steel single crystal

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The ductile-to-brittle transition (DBT) in Fe-13Mn-1.3C (Hadfield steel, I) and Fe-13Mn-2.7 Al-1.3C (Hadfield steel, II) (wt.%) single crystals oriented along \({[011], [{\bar{{1}}}44]}\), and [\({\bar{{1}}11}\)] directions was investigated under tension in the temperature interval of 77 to 673 K. The DBT temperature interval was found to be independent of single crystal orientation. The DBT temperatures were estimated (1) as the mean value between the temperature corresponding to the minimum crystal ductility and the one coinciding with the onset of the plateau of the \({\varepsilon}\)(T)-dependence (TDBT1); and (2) as the temperature where the volume fraction of brittle failure on the fracture surfaces was 50% (TDBT2). The DBT temperatures estimated this way, do not coincide for both steels. Mechanical twinning has been reported as the primary reason for the occurrence of the DBT in austenitic high-carbon Hadfield steel and appears to account for the difference in DBT temperatures as well. Alloying with aluminum partially suppresses twinning in steel (II). Twinning sets in only after a certain amount of dislocation slip, but still influences the fracture mechanism of steel (II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adler PH, Olson GB, Owen WS (1986) Strain hardening of Hadfield manganese steel. Metall Trans A 17: 1725–1737

    Article  Google Scholar 

  • Astafurova EG, Tukeeva MS, Chumlyakov YI (2007a) The effect of aluminum alloying on strength properties and deformation mechanisms of the <123> Hadfield steel single crystals. Russ Phys J 50: 959–963

    Article  CAS  Google Scholar 

  • Astafurova EG, Kireeva IV, Chumlyakov YI, Maier HJ, Sehitoglu H (2007b) The influence of orientation and aluminum content on the deformation mechanisms of Hadfield steel single crystals. Int J Mat Res 98: 144–149

    CAS  Google Scholar 

  • Berner R, Kronmüller H (1965) Plastische verformung von einkristallen, moderne probleme der metallphysik. Springer, Berlin

    Google Scholar 

  • Canadinc D, Sehitoglu H, Maier HJ, Chumlyakov YI (2005) Strain hardening behavior of aluminum alloyed Hadfield steel single crystals. Acta Mat 53: 1831–1842

    Article  CAS  Google Scholar 

  • Christian JW, Mahajan S (1995) Deformation twinning. Prog Mater Sci 39: 1–157

    Article  Google Scholar 

  • Chumlyakov YuI, Kireeva IV, Korotaev AD, Litvinova EI, Zuev YuL (1996) Mechanisms of plastic deformation, hardening, and fracture in single crystals of nitrogen-containing austenitic stainless steels. Russ Phys J 39(3): 189–210

    Article  Google Scholar 

  • Dastur YN, Leslie WC (1981) Mechanism of work hardening in Hadfield manganese steel. Metall Trans 12A: 749–759

    Google Scholar 

  • Müllner P, Solenthaler S, Uggowitzer PJ, Speidel MO (1994) Brittle fracture in austenitic steel. Acta Metal Mater 42: 2211–2217

    Article  Google Scholar 

  • Müllner P, Solenthaler S (1997) On the effect of deformation twinning on defect densities. Mater Sci Ing A 230: 107–115

    Article  Google Scholar 

  • Müllner P (1997) On the ductile to brittle transition in austenitic steel. Mater Sci Ing A 234(236): 94–97

    Article  Google Scholar 

  • Owen WS, Grujicic M (1999) Strain aging of austenitic Hadfield manganese steel. Acta Mater 47: 111–126

    Article  CAS  Google Scholar 

  • Panfilov P, Yermakov A (2004) On brittle fracture in polycrystalline iridium. J Mater Sci 39: 4543–4552

    Article  CAS  ADS  Google Scholar 

  • Raghavan KS, Sastri AS, Marcinkowski MJ (1969) Nature of work-hardening behavior in Hadfield’s manganese steel. Trans Metall Soc AIME 245: 1569–1575

    CAS  Google Scholar 

  • Riedel H (1993) Fracture mechanisms. In: Cahn RW, Haasen P, Kramer EJ (eds) Materials science and technology: a comprehensive treatment. Weinheim, New York, pp 565–634

    Google Scholar 

  • Tomota Y, Xia Y, Inoue K (1998a) Mechanism of low temperature brittle fracture in high nitrogen bearing austenitic steel. Acta Mater 46: 1577–1587

    Article  CAS  Google Scholar 

  • Tomota Y, Nakano J, Xia Y, Inoue K (1998b) Unusual strain rate dependence of low temperature fracture behavior in high nitrogen bearing austenitic steels. Acta Mater 46: 3099–3108

    Article  CAS  Google Scholar 

  • Zuidema BK, Subramanyam DK, Leslie WC (1987) Effect of aluminum on the work hardening and wear resistance of Hadfield manganese steel. Metall Trans 18: 1629–1639

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Astafurova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Astafurova, E.G., Chumlyakov, Y.I. & Maier, H.J. The effect of aluminum alloying on ductile-to-brittle transition in Hadfield steel single crystal. Int J Fract 160, 143–149 (2009). https://doi.org/10.1007/s10704-009-9414-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-009-9414-8

Keywords

Navigation