International Journal of Fracture

, Volume 158, Issue 1, pp 41–49 | Cite as

Behaviour of voids in a shear field

Original Paper


When voids are present in a ductile material subject to a shear dominated stress state under low stress triaxiality the voids collapse to micro-cracks, which subsequently rotate and elongate in the shear field. In the present plane strain analyses for cylindrical voids a surface load normal to a plane connecting the ends of the micro-crack is used as an approximate representation of contact stresses during frictionless sliding. In a previous study of the same problem the author applied hydrostatic pressure inside the nearly closed micro-crack to approximate contact conditions. The transverse surface loads used in the present analyses avoid the tendency to unrealistically elongate the voids. It is found that even though the model applied here gives significantly later occurrence of a maximum overall shear stress than that found by using hydrostatic pressure, the present model does predict a maximum in all the cases analyzed and thus illustrates the micro-mechanism leading to failure of the material by localization of plastic flow.


Voids Plasticity Large strains Shear deformation Contact 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson PM, Fleck NA, Johnson KL (1990) Localization of plastic deformation in shear due to microcracks. J Mech Phys Solids 38(5): 681–699. doi: 10.1016/0022-5096(90)90028-3 CrossRefADSGoogle Scholar
  2. Barsoum I, Faleskog J (2007a) Rupture mechanisms in combined tension and shear—micromechanics. Int J Solids Struct 44: 5481–5498. doi: 10.1016/j.ijsolstr.2007.01.010 MATHCrossRefGoogle Scholar
  3. Barsoum I, Faleskog J (2007) Rupture mechanisms in combined tension and shear—experiments. Int J Solids Struct 44: 1768–1786. doi: 10.1016/j.ijsolstr.2006.09.031 MATHCrossRefGoogle Scholar
  4. Cowie JG, Azrib MA, Olson GB (1987) Micro-void formation during shear deformation of ultrahigh strength steels. In: Proceedings of 34th Sagamore army research conferenceGoogle Scholar
  5. Danas K, Ponte Castaneda P (2009a) A finite-strain model for anisotropic viscoplastic media: I—theory. Eur J Mech A 28: 387–401MATHCrossRefMathSciNetGoogle Scholar
  6. Danas K, Ponte Castaneda P (2009b) A finite-strain model for anisotropic viscoplastic media: II—applications. Eur J Mech A 28: 402–416MATHCrossRefMathSciNetGoogle Scholar
  7. Durban D (1990) A comparative study of simple shear at finite strains of elastoplastic solids. Q J Mech Appl Math 43: 449–465. doi: 10.1093/qjmam/43.4.449 MATHCrossRefMathSciNetGoogle Scholar
  8. Fleck NA, Hutchinson JW (1986) Void growth in shear. Proc R Soc Lond A 407: 435–458CrossRefADSGoogle Scholar
  9. Fleck NA, Hutchinson JW, Tvergaard V (1989) Softening by void nucleation and growth in tension and shear. J Mech Phys Solids 37(4): 515–540. doi: 10.1016/0022-5096(89)90027-6 CrossRefADSGoogle Scholar
  10. Garrison WM Jr, Moody NR (1987) Ductile fracture. J Phys Chem Solids 48(11): 1035–1074. doi: 10.1016/0022-3697(87)90118-1 CrossRefADSGoogle Scholar
  11. Gologanu M, Leblond J, Perrin G, Devaux J (1997) Recent extensions of Gurson’s model for porous ductile metals. In: Suquet P (eds) Continuum micromechanics. Springer-Verlag, Berlin, pp 61–106Google Scholar
  12. Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth—I. Yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99: 2–15Google Scholar
  13. Hutchinson JW (1973) Finite strain analysis of elastic-plastic solids and structures. In: Hartung RF (eds) Numerical solution of nonlinear structural problems. ASME, New York, p 17Google Scholar
  14. Leblond J-B, Mottet G (2008) A theoretical approach of strain localization within thin planar bands in porous ductile materials. Comptes Rendus Mecanique 336: 176–189MATHCrossRefGoogle Scholar
  15. Nahshon K, Hutchinson J (2008) Modification of the Gurson model for shear failure. Eur J Mech A 27: 1–17MATHCrossRefGoogle Scholar
  16. Pedersen TØ (1998) Remeshing in analysis of large plastic deformations. Comput Struct 67: 279–288. doi: 10.1016/S0045-7949(98)00005-4 MATHCrossRefGoogle Scholar
  17. Sewell MJ (1965) On the calculation of potential functions defined on curved boundaries. In: Proc R Soc Lond A 286: 402–411. doi: 10.1098/rspa.1965.0153 MATHCrossRefADSMathSciNetGoogle Scholar
  18. Scheyvaerts F, Onck P, Bréchet Y, Pardoen T (2006) Void growth and coalescence under general loading conditions. Report, Université catholique de LouvainGoogle Scholar
  19. Tvergaard V (1976) Effect of thickness inhomogeneities in internally pressurized elastic-plastic spherical shells. J Mech Phys Solids 24: 291. doi: 10.1016/0022-5096(76)90027-2 CrossRefADSGoogle Scholar
  20. Tvergaard V (1990) Material failure by void growth to coalescence. Adv Appl Mech 27: 83–151. doi: 10.1016/S0065-2156(08)70195-9 MATHCrossRefGoogle Scholar
  21. Tvergaard V (1997) Studies of void growth in a thin ductile layer between ceramics. Comput Mech 20: 186–191. doi: 10.1007/s004660050238 MATHCrossRefGoogle Scholar
  22. Tvergaard V (2004) On fatigue crack growth in ductile materials by cracktip blunting. J Mech Phys Solids 52: 2149–2166. doi: 10.1016/j.jmps.2004.02.007 MATHCrossRefADSGoogle Scholar
  23. Tvergaard V (2008) Shear deformation of voids with contact modeled by internal pressure. Int J Mech Sci 50: 1459–1465. doi: 10.1016/j.ijmecsci.2008.08.007 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Solid MechanicsTechnical University of DenmarkKgs LyngbyDenmark

Personalised recommendations