Advertisement

International Journal of Fracture

, Volume 156, Issue 1, pp 11–20 | Cite as

Crack opening profile in DCDC specimen

  • Gaël Pallares
  • Laurent Ponson
  • Antoine Grimaldi
  • Matthieu George
  • Guillaume Prevot
  • Matteo Ciccotti
Original Paper

Abstract

The opening profile of the cracks produced in the Double Cleavage Drilled Compression (DCDC) specimens for brittle materials is investigated. The study is achieved by combining Finite element simulations of a DCDC linear elastic medium with experimental measurements by crack opening interferometry on pure silica glass samples. We show that the shape of the crack can be described by a simple expression as a function of the geometrical parameters of the sample and the external loading conditions. This result can be used to measure accurately in real time relevant quantities during DCDC experiments, such as the crack length or the stress intensity factor applied to the specimen.

Keywords

DCDC Finite element simulations Crack Opening Interferometry Linear elastic fracture mechanic Crack opening profile 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonamy D, Prades S, Ponson L, Dalmas D, Rountree CL, Bouchaud E, Guillot C (2006) Experimental investigation of damage and fracture in glassy materials at the nanometer scale. Int J Prod Technol 26: 339–353Google Scholar
  2. Born M, Wolf E (1999) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. 7. Cambridge University Press, CambridgeGoogle Scholar
  3. Célarié F (2004) PhD thesis, Université Montpellier 2, FranceGoogle Scholar
  4. Célarié F, Prades S, Bonamy D, Ferrero L, Bouchaud E, Guillot C, Marlière C (2003) Glass breaks like metal but at the nanometer scale. Phys Rev Lett 90: 075504PubMedCrossRefADSGoogle Scholar
  5. Ciccotti M, George M, Ranieri V, Wondraczek L, Marlière C (2008) Dynamic condensation of water at crack tips in fused silica glass. J Non-Cryst Solids 354: 564–568CrossRefADSGoogle Scholar
  6. Ewalds HL, Wanhill RJH (1985) Fracture mechanics. Edward Arnold Limited, LondonGoogle Scholar
  7. Fett T, Rizzi G, Munz D (2005) T-stress solution for DCDC specimens. Eng Fract Mech 72: 145–149CrossRefGoogle Scholar
  8. Fett T, Rizzi G, Creek D, Wagner S, Guin JP, López-Cepero JM, Wiederhorn SM (2008) Finite element analysis of a crack tip in silicate glass: No evidence for a plastic zone. Phys Rev B 77: 174110CrossRefADSGoogle Scholar
  9. Grimaldi A, George M, Pallares G, Malière C, Ciccotti M (2008) The crack tip: a nanolab for studying confined liquids. Phys Rev Lett 100: 165505PubMedCrossRefADSGoogle Scholar
  10. He MY, Turner MR, Evans AG (1995) Analysis of the double cleavage drilled compression specimen for interface fracture energy measurements over a wide range of mode mixities. Acta Metallur Mater 43(9): 3453–3458CrossRefGoogle Scholar
  11. Janssen C (1974) Specimen for fracture mechanics studies on glass. In: Biezeno CB, Burgers JM (eds) Proceedings of the 10th international congress on glass in Tokyo, pp 10.23–10.30Google Scholar
  12. Kysar JW (1998) Effects of strain field on light in crack opening interferometry. Int J Solids Struct 35(1–2): 33–49MATHCrossRefGoogle Scholar
  13. Lardner TJ, Charkravarthy S, Quinn JD, Ritter JE (2001) Further analysis of the DCDC specimen with an offset hole. Int J Fract 109: 227–237CrossRefGoogle Scholar
  14. Liechti KM (1993) On the use of classical interferometry techniques in fracture mechanics. In: Epstein JS (eds) Experimental techniques in fracture, 3rd edn. VCH Publishers, New York, pp 95–124Google Scholar
  15. Maugis D (1999) Contact, adhesion and rupture of elastic solids, 2nd edn. Springer-Verlag, HeidelbergGoogle Scholar
  16. Plaisted TA, Amirkhizi AV, Nemat-Nasser S (2006) Compression-induced axial crack propagation in DCDC polymer samples: experiments and modelling. Int J Fract 141: 447–457CrossRefGoogle Scholar
  17. Rice J (1968) A path-independant integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35: 379–386Google Scholar
  18. Sommer E (1970) An optical method for determining the crack-tip stress intensity factor. Eng Fract Mech 1: 705–718CrossRefGoogle Scholar
  19. Swadener JG, Liechti KM (1998) Asymmetric shielding mechanisms in the mixed-mode fracture of a glass/epoxy interface. J Appl Mech 65: 25–29CrossRefGoogle Scholar
  20. Williams ML (1957) On the stress distribution at the base of a stationary crack. ASME J Appl Mech 24: 109–114MATHGoogle Scholar
  21. Wondraczek L, Dittmar A, Oelgardt C, Célarié F, Ciccotti M, Marlière C (2006) Real-time observation of non-equilibrium liquid condensate confined at tensile crack tips in oxide glasses. J Am Ceram Soc 89: 746–749CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Gaël Pallares
    • 1
    • 2
  • Laurent Ponson
    • 3
  • Antoine Grimaldi
    • 1
  • Matthieu George
    • 1
  • Guillaume Prevot
    • 1
  • Matteo Ciccotti
    • 1
  1. 1.Laboratoire des Colloïdes, Verres et NanomatériauxCNRS, Université Montpellier 2MontpellierFrance
  2. 2.CEA, IRAMIS, SPCSI, Grp. Complex Systems & FractureGif Sur YvetteFrance
  3. 3.Division of Engineering and Applied ScienceCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations