International Journal of Fracture

, Volume 155, Issue 2, pp 155–166 | Cite as

Influence of temperature and strain rate on cohesive properties of a structural epoxy adhesive

  • Thomas Carlberger
  • Anders Biel
  • Ulf Stigh
Original Paper


Effects of temperature and strain rate on the cohesive relation for an engineering epoxy adhesive are studied experimentally. Two parameters of the cohesive laws are given special attention: the fracture energy and the peak stress. Temperature experiments are performed in peel mode using the double cantilever beam specimen. The temperature varies from −40 to + 80°C. The temperature experiments show monotonically decreasing peak stress with increasing temperature from about 50 MPa at −40°C to about 10 MPa at + 80°C. The fracture energy is shown to be relatively insensitive to the variation in temperature. Strain rate experiments are performed in peel mode using the double cantilever beam specimen and in shear mode, using the end notch flexure specimen. The strain rates vary; for peel loading from about 10−4 to 10 s−1 and for shear loading from 10−3 to 1 s−1. In the peel mode, the fracture energy increases slightly with increasing strain rate; in shear mode, the fracture energy decreases. The peak stresses in the peel and shear mode both increase with increasing strain rate. In peel mode, only minor effects of plasticity are expected while in shear mode, the adhesive experiences large dissipation through plasticity. Rate dependent plasticity, may explain the differences in influence of strain rate on fracture energy between the peel mode and the shear mode.


Cohesive law Strain rate Temperature dependence Experimental DCB-specimen ENF-specimen Crashworthiness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alfredsson KS (2004) On the instantaneous energy release rate of the end-notch flexure adhesive joint specimen. Int J Solids Struct 41: 4787–4807. doi: 10.1016/j.ijsolstr.2004.03.008 MATHCrossRefGoogle Scholar
  2. Alfredsson KS, Biel A, Leffler K (2003) An experimental method to determine the complete stress-deformation relation for a structural adhesive layer loaded in shear. In: Proceedings of the 9th international conference on the mechanical behaviour of materials, Geneva, Switzerland, 2002Google Scholar
  3. Andersson T, Biel A (2006) On the effective constitutive properties of a thin adhesive layer loaded in peel. Int J Fract 141: 227–246. doi: 10.1007/s10704-006-0075-6 CrossRefGoogle Scholar
  4. Andersson T, Stigh U (2004) The stress-elongation relation for an adhesive layer loaded in modus I using equilibrium of energetic forces. Int J Solids Struct 41: 413–434. doi: 10.1016/j.ijsolstr.2003.09.039 CrossRefGoogle Scholar
  5. Ashcroft IA, Hughes DJ, Shaw SJ (2001) Mode I fracture of epoxy bonded composites joints: 1. Quasi-static loading. Int J Adhes Adhesives 21: 87–99. doi: 10.1016/S0143-7496(00)00038-5 CrossRefGoogle Scholar
  6. Bascom WD, Cottington RL (1976) Effect of temperature on the adhesive fracture behaviour of an elastomer-epoxy resin. J Adhes 7: 333–346. doi: 10.1080/00218467608075063 CrossRefGoogle Scholar
  7. Biel A (2008) Cohesive laws for adhesives at repeated loading—an experimental method (in preparation)Google Scholar
  8. Biel A, Carlberger T (2007) Influence of temperature on cohesive parameters for adhesives. In: Sørensen BF, Mikelsen LP, Lilholt H, Goutianos S, Abdul-Mahdi FS (eds) Procceedings of 28th Risø international symposium on materials scienceGoogle Scholar
  9. Biel A, Stigh U (2007) An analysis of the evaluation of the fracture energy using the DCB-specimen. Arch Mech 59: 311–327MATHGoogle Scholar
  10. Biel A, Stigh U (2008) Effects of constitutive parameters on the accuracy of measured fracture energy using the DCB-specimen. Eng Fract Mech 75: 2968–2983. doi: 10.1016/j.engfracmech.2008.01.002 CrossRefGoogle Scholar
  11. Blackman BRK, Kinloch AJ, Taylor AC, Wang Y (2000) The impact wedge-peel performance of structural adhesives. J Mater Sci 35: 1867–1884. doi: 10.1023/A:1004793730352 CrossRefGoogle Scholar
  12. Blackman BRK, Hadavinia H, Kinloch AJ, Williams JG (2003) The use of a cohesive zone model to study the fracture of fibre composites and adhesively-bonded joints. Int J Fract 119: 25–46. doi: 10.1023/A:1023998013255 CrossRefGoogle Scholar
  13. Carlberger T, Stigh U (2007) An explicit FE-model of impact fracture in an adhesive joint. Eng Fract Mech 74: 2247–2262. doi: 10.1016/j.engfracmech.2006.10.016 CrossRefGoogle Scholar
  14. Chai H (2004) The effects of bond thickness, rate and temperature on the deformation and fracture of structural adhesives under shear loading. Int J Fract 130: 497–515. doi: 10.1023/B:FRAC.0000049504.51847.2a CrossRefGoogle Scholar
  15. Guo C, Sun CT (1998) Dynamic mode-I crack-propagation in a carbon/epoxy composite. Compos Sci Technol 58: 1405–1410. doi: 10.1016/S0266-3538(98)00025-6 CrossRefGoogle Scholar
  16. Högberg JL, Sørensen BF, Stigh U (2007) Constitutive behaviour of mixed mode loaded adhesive layer. Int J Solids Struct 44: 8335–8354. doi: 10.1016/j.ijsolstr.2007.06.014 CrossRefGoogle Scholar
  17. Kinloch AJ (1987) Adhesion and adhesives—science and technology. Chapman and Hall, LondonGoogle Scholar
  18. Kinloch AJ, Shaw SJ (1981) The fracture resistance of a toughened epoxy adhesive. J Adhes 12: 59–77. doi: 10.1080/00218468108071189 CrossRefGoogle Scholar
  19. Kusaka T, Hojo M, Mai Y, Kurokawa T, Nojima T, Ochiai S (1998) Rate dependence of mode-I fracture behaviour in carbon-fibre/epoxy composite laminates. Compos Sci Technol 58: 591–602. doi: 10.1016/S0266-3538(97)00176-0 CrossRefGoogle Scholar
  20. Leffler K, Alfredsson KS, Stigh U (2007) Shear behaviour of adhesive layers. Int J Solids Struct 44: 530–545. doi: 10.1016/j.ijsolstr.2006.04.036 MATHCrossRefGoogle Scholar
  21. Lutz A, Schneider D (2006) Toughened epoxy adhesive composition. USPTO Applicaton #: 20060276601—Class: 525528000 (USPTO), Dow Chemical Company—Midland, MI, USAGoogle Scholar
  22. Olsson P, Stigh U (1989) On the determination of the constitutive properties of the interphase layers—an exact solution. Int J Fract 41: 71–76. doi: 10.1007/BF00018870 CrossRefGoogle Scholar
  23. Salomonsson K, Andersson T (2008) Modeling and parameter calibration of an adhesive layer at the meso level. Mech Mater 40: 48–65. doi: 10.1016/j.mechmat.2007.06.004 CrossRefGoogle Scholar
  24. Salomonsson K, Stigh U (2008) An adhesive interphase element for structural analyses. Int J Numer Methods Eng (To appear). doi: 10.1002/nme.2333
  25. Schmidt P (2007) Computational models of adhesively bonded joints. PhD thesis, Linköping UniversityGoogle Scholar
  26. Sørensen BF (2002) Cohesive law and notch sensitivity of adhesive joints. Acta Mater 50: 1053–1061. doi: 10.1016/S1359-6454(01)00404-9 CrossRefGoogle Scholar
  27. Sørensen BF, Jørgensen K, Jacobsen TK, Østergaard RC (2006) DCB-specimen loaded with uneven bending moments. Int J Fract 141: 163–176. doi: 10.1007/s10704-006-0071-x CrossRefGoogle Scholar
  28. Stigh U (1988) Damage and crack growth analysis of the double cantilever beam specimen. Int J Fract 37: R13–R18. doi: 10.1007/BF00017826 CrossRefGoogle Scholar
  29. Stigh U, Andersson T (2000) An experimental method to determine the complete stress-elongation relation for a structural adhesive layer loaded in peel. In: Williams JG, Pavan A (eds) Fracture of polymers, composites and adhesives. ESIS publication 27.. Elsevier, Amsterdam, pp 297–306CrossRefGoogle Scholar
  30. Suo Z, Bao G, Fan B (1992) Delamination R-curve phenomena due to damage. J Mech Phys Solids 40: 1–16. doi: 10.1016/0022-5096(92)90198-B CrossRefADSGoogle Scholar
  31. Tamuzs V, Tarasovs S, Vilks U (2003) Delamination properties of translaminar-reinforced composites. Compos Sci Technol 63: 1423–1431. doi: 10.1016/S0266-3538(03)00042-3 CrossRefGoogle Scholar
  32. Yang QD, Thouless MD (2001) Mixed-mode fracture analyses of plastically deforming adhesive joints. Int J Fract 110: 175–187. doi: 10.1023/A:1010869706996 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.SAAB Automobile ABTrollhättanSweden
  2. 2.University of SkövdeSkövdeSweden

Personalised recommendations