Estimating durability of steels at repeated bending impacts

Original Paper


Many components are subjected to repeated impacts, or in some cases these impacts can appear as additional loads. Repeated impacts define a fatigue phenomenon known under the name of Impact Fatigue. Because the strain rate changes the material characteristics it is to expect that the material properties at impact fatigue to be different in regard to those obtained at non-impact fatigue. This paper presents a classification of repeated impact tests, and starting from this a series of parameters used for durability estimation will be analyzed. The high number of parameters used by different authors creates difficulties in comparison the different laboratories results. The importance of the shape and dimensions of specimens, and the stiffness of supports are highlighted. In order to avoid these influences the authors proposed an experimental technique, based on testing of Charpy specimens, in similar conditions as single impact test. A new parameter η is proposed in order to correlate the durability at repeated impacts with the Charpy V Notch (CVN) impact energy.


Impact fatigue Durability Charpy V notch specimen 


  1. Akizono K (1964) Experimental study on the stress of beams caused by impact loads. Trans Jpn Soc Mech Eng 30(215): 800–805Google Scholar
  2. Akizono K, Murakami R (1978) Influence of grain size on impact fatigue behavior in low carbon steel. Scientific Papers of Faculty of Engineering Tokushima University. vol 23, pp 129–137Google Scholar
  3. Azouaoui K, Rechak S, Azari Z, Benmedakhene S, Laksimi A, Pluvinage G (2001) Modelling of damage and failure of glass/epoxy composite plates subject to impact fatigue. Int J Fatigue 23: 877–885. doi: 10.1016/S0142-1123(01)00050-0 CrossRefGoogle Scholar
  4. Casas-Rodriguez JP, Ashcroft IA, Silberschmidt VV (2007a) Damage evolution in adhesive joints subjected to impact fatigue. J Sound Vib 308: 467–478. doi: 10.1016/j.jsv.2007.03.088 CrossRefADSGoogle Scholar
  5. Casas-Rodriguez JP, Ashcroft IA, Silberschmidt VV (2007b) Propagation of delamination zones in bonded joints. Proc Estonian Acad Sci Phys Math 56(2): 170–176MATHGoogle Scholar
  6. Chatani A (1973) On the strength in brittle fracture region under repeated impact tensile load. J Soc Mater Sci 737(1): 33–36Google Scholar
  7. Dumitru I (1998) Oboseala la soc a materialelor. Mirton, TimisoaraGoogle Scholar
  8. Dumitru I, Babeu T, Babeu S, Marsavina L (1999) Effect of prestressing on durability at repeated impacts. In: Babitsky VI (eds) Dynamics of vibro-impact systems. Springer, Berlin, pp 261–268Google Scholar
  9. Dumitru I, Faur N, Cipleu A (2006) Impact fatigue—research for further development. In: Proceedings of 5th international congress of Croatian Society of mechanics, Trogir, pp 131–137Google Scholar
  10. Dumitru I, Marsavina L, Faur N (2007a) Experimental study of torsional impact fatigue of shafts. J Sound Vib 308: 479–488. doi: 10.1016/j.jsv.2007.04.011 CrossRefADSGoogle Scholar
  11. Dumitru I, Marsavina L, Faur N, Hajdu I (2007b) Models for estimating the durability at repeated impacts. Key Eng Mater 348–349: 205–208CrossRefGoogle Scholar
  12. Freund BL (1998) Dynamic fracture mechanics. Cambridge University Press, CambridgeGoogle Scholar
  13. Habara H (1993) Fundamental study on impact fatigue. Osaka Prefectural Research Inst., Dep. of Mech. Eng, OsakaGoogle Scholar
  14. Habara H, Nishiyama U (1973) Studies on impact fatigue Part I. Trans Jpn Soc Mech Eng 318(39): 487–497Google Scholar
  15. Habara H, Nishiyama U, Katayoma T (1974) Studies on impact fatigue, Part II. Trans Jpn Soc Mech Eng 337(40): 2474–2483Google Scholar
  16. Iguchi H, Tanaka K, Taira S (1979) Failure mechanisms in impact fatigue of materials. Fatigue Eng Mater Struct 2: 165–176. doi: 10.1111/j.1460-2695.1979.tb01352.x CrossRefGoogle Scholar
  17. Johnson AA (2003) Impact-fatigue an emerging field of study. In: Proceedings of the international conference on fatigue 2003, Engineering Integrity Society, Cambridge, pp 257–266Google Scholar
  18. Johnson AA, Storey RJ (2007) The impact fatigue properties of iron and steel. J Sound Vib 308: 458–466. doi: 10.1016/j.jsv.2007.06.044 CrossRefADSGoogle Scholar
  19. Kawaguchi T, Nishimura H, Ito K, Sorimachi H, Kuriyama T, Narisawa I (2004) Impact fatigue properties of glass fiber-reinforced thermoplastics. Compos Sci Technol 64: 1057–1067. doi: 10.1016/j.compscitech.2003.08.007 CrossRefGoogle Scholar
  20. Kawamoto M, Shibata T, Tatsuo K, Niwa T (1968) Effect of statistical strength on durability of steels on tensile impact fatigue strength. Bull JSME 11(47): 798–804Google Scholar
  21. Kobayashi T (2000) Strength and fracture of aluminum alloys. Mater Sci Eng A 286: 333–341. doi: 10.1016/S0921-5093(00)00935-7 CrossRefGoogle Scholar
  22. Maekawa I (2005) The influence of stress wave on the impact fracture strength of cracked member. Int J Impact Eng 32: 351–357. doi: 10.1016/j.ijimpeng.2004.11.004 CrossRefGoogle Scholar
  23. Maekawa I, Tanabe Y, Nou Y (1982) Size effect on impact torsional fatigue. In: Proceedings of the 25th Japan congress on materials research, Kyoto, pp 124–127Google Scholar
  24. Murakami R, Akizono K (1982) The influence of cyclic impact loading and stress ratio on fatigue crack growth rate in aluminum alloy. In: Sih GC (ed) Fracture mechanics applied to materials evaluation and structures design. Melbourne, pp 505–516Google Scholar
  25. Nakayama H, Tanaka T (1979) Review on the impact fatigue strength of metallic materials. Bull Inst Res OIU 2: 93–107Google Scholar
  26. Nakayama H, Tanaka T (1984) Impact fatigue crack growth behaviors of high strength low alloy steel. Int J Fatigue 26: R19–R24Google Scholar
  27. Nishiyama U, Habara H, Katayama T (1977) Fundamental study on impact fatigue. Trans Jpn Soc Mech Eng 43(374): 3613–3620Google Scholar
  28. Ray D, Sarkar BK, Bose NR (2002) Impact fatigue of vinylester resin mtrix composites reinforced with alkali treated jute fibres. Compos Part A 33: 233–241. doi: 10.1016/S1359-835X(01)00096-3 CrossRefGoogle Scholar
  29. Roy R, Sarkar BK, Bose NR (2001a) Behaviour of E-glass fibre reinforced vinylester resin composites under impact fatigue. Bull Mater Sci 24(2): 137–142. doi: 10.1007/BF02710090 CrossRefGoogle Scholar
  30. Roy R, Sarkar BK, Bose NR (2001b) Impact fatigue of glass fibre-vinylester resin composites. Compos Part A 32: 871–876. doi: 10.1016/S1359-835X(00)00151-2 CrossRefGoogle Scholar
  31. Sahoo SK, Silberschmidt VV (2007) Effect of multi-impacts on a PMMA sheet material. J Mater Process Technol (in press). doi: 10.1016/j.jmatprotec.2007.11.035
  32. Sarkar BK, Ray D (2004) Effect of the defect concentration on the impact fatigue endurance of untreated and alkali treated jute–vinylester composites under normal and liquid nitrogen atmosphere. Compos Sci Technol 64: 2213–2219. doi: 10.1016/j.compscitech.2004.03.017 CrossRefGoogle Scholar
  33. Sebbani MJE, Allaire C (2001) Mechanical impact fatigue of refractories. Br Ceram Trans 100(5): 193–196. doi: 10.1179/096797801681440 CrossRefGoogle Scholar
  34. Sinmazcelik T, Arici AA, Gunay V (2006) Impact-fatigue behavior of unidirectional carbon fibre reinforced polyetherimide (PEI) composites. J Mater Sci 41: 6237–6244. doi: 10.1007/s10853-006-0720-5 CrossRefADSGoogle Scholar
  35. Schrauwen B, Peijs T (2002) Influence of matrix ductility and fibre architecture on the repeated impact response of glass-fiber-reinforced laminated composites. Appl Compos Mater 9: 331–352. doi: 10.1023/A:1020267013414 CrossRefGoogle Scholar
  36. Tanaka T, Nakayama H (1973) Studies on impact fatigue, Part I. Bull JSME 16(102): 1814–1828Google Scholar
  37. Tanaka T, Nakayama H (1974a) Studies on impact fatigue, Part II. Bull JSME 17(113): 1379–1388Google Scholar
  38. Tanaka T, Nakayama H (1974b) Low cycle impact fatigue on pure aluminum. In: Proceedings of the 17th Japan Congress on materials Research, Kyoto, pp 61–66Google Scholar
  39. Tanaka T, Nakayama H (1976) Studies on impact fatigue, Part IV. Bull JSME 19(138): 1391–1400Google Scholar
  40. Tanaka T, Nakayama H, Kimura H (1985) On the impact fatigue crack growth behavior of metallic materials. Fatigue Fract Eng Mater Struct 8(1): 13–22. doi: 10.1111/j.1460-2695.1985.tb00416.x CrossRefGoogle Scholar
  41. Zhang M, Yang P, Tan Y (1999) Micromechanisms of fatigue crack nucleation and short crack growth in a low carbon steel under low cycle impact fatigue loading. Int J Fatigue 21: 823–830. doi: 10.1016/S0142-1123(99)00031-6 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department Strength of MaterialsPolitehnica University of TimisoaraTimisoaraRomania

Personalised recommendations