Advertisement

Three-dimensional stress fields near notches and cracks

  • Chongmin She
  • Junhua Zhao
  • Wanlin Guo
Original Paper

Abstract

Structures with notches have a tendency to develop critical crack growth because of the stress concentration. The strength of the structures with stress gradient usually shows strong three-dimensional (3D) effects even under in-plane loading. The commonly two-dimensional (2D) models for fracture assessments of bodies with notches and cracks may lead to inaccurate predictions when in-plane loading is applied to certain 3D geometries. In the paper, the recent researches on the 3D effects of stress concentrations at notches and 3D stress fields of cracks are summarized. A new concept of equivalent thickness of the point on the crack front line is proposed based on the detailed analyses of the 3D out-of-plane stress fields of cracks, and then new empirical formulae of the 3D out-of-plane stress constraint factor T z of I–II mixed-mode cracks are obtained by use of the equivalent thickness. Combining the T z with the in-plane constraint parameters T or Q, the 3D multi-parameter descriptions of the stress field in front of various types of cracks using KT z, JT z, KTT z and JQT z combination can be formulated.

Keywords

Three-dimensional effect Notch Crack Constraints Equivalent thickness Mixed-mode cracks 

References

  1. Bellett D, Taylor D (2006) The effect of crack shape on the fatigue limit of three-dimensional stress concentrations. Int J Fatigue 28: 114–123 doi: 10.1016/j.ijfatigue.2005.04.010 CrossRefGoogle Scholar
  2. Bellett D, Taylor D, Marco S, Mazzeo E, Guillois J, Pircher T (2005) The fatigue behaviour of three-dimensional stress concentrations. Int J Fatigue 27: 207–221 doi: 10.1016/j.ijfatigue.2004.07.006 CrossRefGoogle Scholar
  3. Betegon C, Hancock JW (1991) Two-parameter characterization of elastic-plastic crack tip fields. J Appl Mech 58: 104–113 doi: 10.1115/1.2897135 CrossRefGoogle Scholar
  4. Chao YJ, Yang S, Sutton MA (1994) On the fracture of solids characterized by one or two parameters: theory and practice. J Mech Phys Solids 42: 629–647 doi: 10.1016/0022-5096(94)90055-8 CrossRefGoogle Scholar
  5. Clatterbuck DM, Chrzan DC, Morris JW Jr (2003) The influence of triaxial stress on the ideal tensile strength of iron. Scr Mater 49: 1007–1011 doi: 10.1016/S1359-6462(03)00490-1 CrossRefGoogle Scholar
  6. Guo W (1993a) Elastoplastic three-dimensional crack border field-I. Singular structure of the field. Eng Fract Mech 46: 93–104 doi: 10.1016/0013-7944(93)90306-D Google Scholar
  7. Guo W (1993b) Elastoplastic three-dimensional crack border field-II. Asymptotic solution for the field. Eng Fract Mech 46: 105–113 doi: 10.1016/0013-7944(93)90307-E Google Scholar
  8. Guo W (1995) Elastoplastic three-dimensional crack border field-III. Fracture parameters. Eng Fract Mech 51: 51–71 doi: 10.1016/0013-7944(94)00215-4 Google Scholar
  9. Guo W (2000) Recent advances in three-dimensional fracture mechanics. Key Eng Mater 183: 193–198CrossRefGoogle Scholar
  10. Hutchinson JW (1968) Singular behavior at the end of a tensile crack in a hardening material. J Mech Phys Solids 16: 13–31 doi: 10.1016/0022-5096(68)90014-8 CrossRefGoogle Scholar
  11. Irwin GR (1948) Fracture dynamics. In: Fracturing of metals. American Society for Metals, pp 147–166Google Scholar
  12. Irwin GR (1958) Fracture. Handbuch der Physik, 6. Springer-Verlag, Heidelberg, pp 551–590Google Scholar
  13. Kane TR, Mindlin RD (1956) High frequency extensional vibrations of plates. J Appl Mech Trans ASME 23: 277–283Google Scholar
  14. Kosmodamianskiy AS (1970) Three dimensional stress state of the plate with holes. Educational Book, DonetskGoogle Scholar
  15. Kotousov A, Wang CH (2002) Three-dimensional stress constraint in an elastic plate with a notch. Int J Solids Struct 39: 4311–4326 doi: 10.1016/S0020-7683(02)00340-2 CrossRefGoogle Scholar
  16. Li ZH, Guo W (2001) Three-dimensional elastic stress fields ahead of blunt V-notches in finite thickness plates. Int J Fract 107: 53–71 doi: 10.1023/A:1026586819885 CrossRefGoogle Scholar
  17. Li YC, Wang ZQ (1986) High-order asymptotic field of tensile plane-strain nonlinear crack problems. Scientia Sin A 29: 941–955Google Scholar
  18. Li ZH, Guo W, Kuang ZB (2000) Three-dimensional elastic stress fields near notches in finite thickness plates. Int J Solids Struct 37: 7617–7631 doi: 10.1016/S0020-7683(99)00311-X CrossRefGoogle Scholar
  19. Moftahar A, Buczynski A, Glinka G (1995) Calculation of elastoplastic strain and stress in notches under multiaxial loading. Int J Fract 70: 357–373 doi: 10.1007/BF00032453 CrossRefGoogle Scholar
  20. Muskhelishvili NI (1963) Some basic problems of the mathematical theory of elasticity. Noordhoff, GroningenGoogle Scholar
  21. O’Dowd NP, Shih CF (1991) Family of crack-tip fields characterized by a triaxiality parameter—I. Structure of fields. J Mech Phys Solids 39: 989–1015 doi: 10.1016/0022-5096(91)90049-T Google Scholar
  22. O’Dowd NP, Shih CF (1992) Family of crack-tip fields characterized by a triaxiality parameter—II. Fracture applications. J Mech Phys Solids 40: 939–963 doi: 10.1016/0022-5096(92)90057-9 Google Scholar
  23. Rice JR, Rosengren GF (1968) Plane strain deformation near a crack tip in a power-law hardening material. J Mech Phys Solids 16: 1–12 doi: 10.1016/0022-5096(68)90013-6 CrossRefGoogle Scholar
  24. Sadowsky MA, Sternberg E (1947) Stress concentration around an ellipsoidal cavity in an infinite body under arbitrary plane stress perpendicular to the axis of revolution of the cavity. J Appl Mech Trans ASME 14: A191–A210Google Scholar
  25. Savin GN (1961) Stress concentration around holes. Pergamon Press, New YorkGoogle Scholar
  26. Sharma SM, Aravas N (1991) Determination of high-order terms in asymptotic elastoplastic crack tip solutions. J Mech Phys Solids 39: 1043–1072CrossRefGoogle Scholar
  27. She C, Guo W (2006) Numerical investigations of maximum stress concentration at elliptic holes in finite thickness piezoelectric plates. Int J Fatigue 28: 438–445 doi: 10.1016/j.ijfatigue.2005.06.046 CrossRefGoogle Scholar
  28. She C, Guo W (2007a) Three-dimensional stress concentrations at elliptic holes in elastic isotropic plates subjected to tensile stress. Int J Fatigue 29(2): 330–335 doi: 10.1016/j.ijfatigue.2006.03.012 CrossRefGoogle Scholar
  29. She C, Guo W (2007b) The out-of-plane constraint of mixed-mode cracks in thin elastic plates. Int J Solids Struct 44(9): 3021–3034 doi: 10.1016/j.ijsolstr.2006.09.002 CrossRefGoogle Scholar
  30. Shin CS, Man KC, Wang CM (1994) A practical method to estimate the stress concentration of notches. Int J Fatigue 16: 242–256 doi: 10.1016/0142-1123(94)90338-7 CrossRefGoogle Scholar
  31. Singh MNK, Glinka G, Dubey RN (1996) Elastic-plastic stress-strain calculation in notch bodies subjected to non-proportional loading. Int J Fract 76: 36–60Google Scholar
  32. Sternberg E, Sadowsky MA, Chicago ILL (1949) Three-dimensional solution for the stress concentration around a circular hole in a plat of arbitrary thickness. J Appl Mech 16: 27–36Google Scholar
  33. Vorovich II, Malkina OS (1967) The state of stress in a thick plate. J Appl Math Mech 31: 252–264 doi: 10.1016/0021-8928(67)90150-5 CrossRefGoogle Scholar
  34. Wang CH, Guo W, Rose LRF (1999) Elastoplastic analysis of notch-tip fields in strain hardening materials. J Eng Mater Tech ASME 121: 313–320 doi: 10.1115/1.2812380 CrossRefGoogle Scholar
  35. Williams ML (1957) On the stress distribution at the base of a stationary crack. J Appl Mech 24: 109–114Google Scholar
  36. Yang Z, Guo W, Xu X (2003) Three-dimensional elastic stress fields near notches in finite thickness bimaterial plates. J Mech Strength 25: 90–94Google Scholar
  37. Yu P, Guo W, She C, Zhao J (2008) The influence of Poisson’s ratio on thickness-dependent stress concentration at elliptic holes in elastic plates. Int J Fatigue 30: 165–171 doi: 10.1016/j.ijfatigue.2007.02.007 CrossRefGoogle Scholar
  38. Zhang B, Guo W (2005) Tz constraints of semi-elliptical surface cracks in elastic plates subjected to uniform tension loading. Int J Fract 131: 173–187 doi: 10.1007/s10704-004-5105-7 CrossRefGoogle Scholar
  39. Zhang B, Guo W (2007) Three-dimensional stress state around quarter-elliptical corner cracks in elastic plates subjected to uniform tension loading. Eng Fract Mech 74: 386–398 doi: 10.1016/j.engfracmech.2006.05.011 CrossRefGoogle Scholar
  40. Zhao J, Guo W, She C (2006) Three dimensional K-Tz stress fields around the embedded center elliptical crack front in elastic plates. Acta Mech Sin 22: 148–155 doi: 10.1007/s10409-006-0095-5 CrossRefGoogle Scholar
  41. Zhao J, Guo W, She C (2007a) The in-plane and out-of-plane stress constraint factors and K-T-Tz description of stress field near the border of a semi-elliptical surface crack. Int J Fatigue 29(3): 435–443 doi: 10.1016/j.ijfatigue.2006.05.005 CrossRefGoogle Scholar
  42. Zhao J, Guo W, She C (2007b) The in-plane and out-of-plane stress constraint factors and K-T-Tz description of stress field near the border of a quarter-elliptical corner crack. Fatigue Fract Eng Mater Struct 30(8): 673–681CrossRefGoogle Scholar
  43. Zhao J, Guo W, She C (2007c) The three-parameter description of stress field near the border of an embedded elliptical crack. Acta Mech 190: 29–44 doi: 10.1007/s00707-006-0409-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Academy of Frontier ScienceNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations