Skip to main content
Log in

On the dynamics of necking and fragmentation—II. Effect of material properties, geometrical constraints and absolute size

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In this series of papers, we investigate the mechanics of deformation localization and fragmentation in ductile materials. The behavior of ductile metals at strain rates between 4000 and 15,000 s−1 is considered. The expanding ring experiment is used as the primary tool for examining the material behavior in this range of strain rates. In Part I, the details of the experiment and the experimental observations on Al 6061-O were reported. Statistics of necking and fragmentation were evaluated and the process was modeled through the idea of the Mott release waves both from necking and fragmentation. Finally, it was shown that the strain in the ring in regions that strained uniformly never exceeded the necking strain. In the present paper, Part II, we address the issue of strain hardening and strain-rate sensitivity. Specifically, we examine different materials—Al 1100-H14, and Cu 101—in order to determine the role of material constitutive property on the dynamics of necking. These experiments reinforce the conclusion presented in Part I that the onset of necking essentially terminates the possibility of further straining in other parts of the ring and even more importantly that there is no influence of material inertia on the strain at the onset of necking in this wide range of materials. Furthermore, the effect of aspect ratio of the specimen is evaluated; this reveals that as the aspect ratio increases beyond about five, in addition to or instead of diffuse necking, localization into the sheet necking mode is observed; in this mode, the effect of ring expansion speeds is demonstrated to result in an increase of the strain at the onset of localization. In addition, an absolute size effect is observed: larger specimens exhibit localization at larger strain levels. These observations are explained in terms of plastic wave propagation and reproduced with finite element simulations. In future contributions as part of this sequel, we will explore the effect of other geometrical constraints and the effect of a compliant cladding or coating on the development of necking and fragmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ravi-Chandar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Ravi-Chandar, K. On the dynamics of necking and fragmentation—II. Effect of material properties, geometrical constraints and absolute size. Int J Fract 150, 3–36 (2008). https://doi.org/10.1007/s10704-008-9233-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-008-9233-3

Keywords

Navigation