International Journal of Fracture

, Volume 151, Issue 2, pp 247–268 | Cite as

Competition between deflection and penetration at an interface in the vicinity of a main crack

  • E. Martin
  • B. Poitou
  • D. Leguillon
  • J. M. Gatt
Original Paper


The mechanisms which govern crack deflection and crack penetration at interfaces must be understood in order to design composites and layered materials. Experimental observations have shown that a realistic description of crack deflection must take into account the initiation of fracture mechanisms by the stress field of an approaching matrix crack. Fracture mechanisms which include interfacial debonding and penetration are thus analysed in the vicinity of a main crack. For this purpose, a unit cell consisting of a single fibre surrounded by a cylindrical tube of matrix is studied with the help of a finite element model. Initiation stress and nucleation length are determined for both mechanisms by using an initiation criterion which requires to fulfil an energy and a stress condition. Investigating the competition between the initiation of the two mechanisms provides decohesion/penetration maps which depend on the strength and toughness of interface and fibre. It is shown that the debonding or penetration condition can be reduced to an energy or a stress condition depending on the relative value of some characteristic fracture lengths of interface and fibre. Finally it is noted that a low toughness interface is not systematically a sufficient condition to promote the initiation of deflection.


Crack initiation Interfacial fracture mechanics Composite materials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bernadou M et al (1988) MODULEF: a finite element library. INRIA, Roquencourt, FranceGoogle Scholar
  2. Buchholz FG, Chergui A, Richard HA (1999) Computational fracture analysis by means of virtual crack closure integrals. In: Garcia Garino C, Mirasso A, Baron J, Nunez McLeod J (eds) Mecanica computational. Mecom99, MendozaGoogle Scholar
  3. Domergue JM, Vagaggini E, Evans AG (1995) Relationships between hysteresis measurements and the constituent properties of ceramic matrix composites II: experimental studies on unidirectional materials. J Am Ceram Soc 95: 2721–2731. doi: 10.1111/j.1151-2916.1995.tb08047.x CrossRefGoogle Scholar
  4. Evans AG, Zok FW, Davis JB (1991) The role of the interface in fiber reinforced brittle matrix. Compos Sci Technol 42: 3–24. doi: 10.1016/0266-3538(91)90010-M CrossRefGoogle Scholar
  5. He MY, Hutchinson JW (1989) Crack deflection at an interface between dissimilar elastic materials. Int J Solids Struct 25: 1053–1067. doi: 10.1016/0020-7683(89)90021-8 CrossRefGoogle Scholar
  6. Henninger C, Leguillon D, Martin E (2007) Crack initiation at a V-notch – comparison between a brittle fracture criterion and the Dugdale cohesive model. C R Mecanique 335: 388–393Google Scholar
  7. Hutchinson JW, Mear ME, Rice JR (1987) Crack paralleling an interface between dissimilar materials. ASME J Appl Mech 54: 828–832Google Scholar
  8. Kagawa Y, Goto K (1998) Direct observation and modelling of the crack fibre interaction process in continuous fibre-reinforced ceramics: model experiments. Mater Sci Eng A 250: 285–290. doi: 10.1016/S0921-5093(98)00603-0 CrossRefGoogle Scholar
  9. Kerans RJ, Hay RS, Parthasarathy TA, Cinilbulk MK (2002) Interface design for oxydation-resistant ceramic composite. J Am Ceram Soc 85: 2599–2632Google Scholar
  10. Lee W, Howard SJ, Clegg WJ (1996) Growth of interface defects and its effect on crack deflection and toughening criteria. Acta Mater 44: 3905–3922. doi: 10.1016/S1359-6454(96)00068-7 CrossRefGoogle Scholar
  11. Leguillon D (2002) Strength or toughness? A criterion for crack onset at a notch. Eur J Mech A/Solids 21: 61–72CrossRefGoogle Scholar
  12. Leguillon D, Sanchez-Palencia E (1992) Fracture in heterogeneous materials: weak and strong singularities. In: Ladeveze P, Zienkiewicz OC(eds) New advances in computational structural mechanics, studies in applied mathematics, vol 32. Elsevier, Amsterdam, pp 423–434Google Scholar
  13. Leguillon D, Yosibash Z (2003) Crack onset at a V-Notch. Influence of the notch tip radius. Int J Fract 122: 1–21. doi: 10.1023/B:FRAC.0000005372.68959.1d Google Scholar
  14. Leguillon D, Lacroix C, Martin E (2000) Interface debonding ahead of a primary crack. J Mech Phys Solids 48: 2137–2161. doi: 10.1016/S0022-5096(99)00101-5 CrossRefGoogle Scholar
  15. Liu YF, Tanaka Y, Masuda C (1997) Analysis of the fiber-matrix cylindrical model with a circumferential crack. Int J Fract 88: 87–105. doi: 10.1023/A:1007463422102 CrossRefGoogle Scholar
  16. Majumdar BS, Gundel DB, Dutton RE, Warrier SG, Pagano NJ (1998) Evaluation of the tensile interface strength in brittle matrix composite systems. J Am Ceram Soc 81: 1600–1610CrossRefGoogle Scholar
  17. Martinez D, Gupta V (1994) Energy criterion for crack deflection at an interface between two orthotropic media. J Mech Phys Solids 42: 1247–1271. doi: 10.1016/0022-5096(94)90034-5 CrossRefGoogle Scholar
  18. Martin E, Leguillon D (2004) Energetic conditions for interfacial failure in the vicinity of a matrix crack in brittle matrix composites. Int J Solids Struct 41: 6937–6948. doi: 10.1016/j.ijsolstr.2004.05.044 CrossRefGoogle Scholar
  19. Martin E, Leguillon D, Lacroix C (2001) A revisited criterion for crack deflection at an interface in brittle matrix composites. Compos Sci Technol 61: 1671–1679. doi: 10.1016/S0266-3538(01)00067-7 CrossRefGoogle Scholar
  20. Martin E, Leguillon D, Lacroix C (2002) An energy criterion for the initiation of interfacial failure ahead of a matrix crack in brittle matrix composites. Compos Interf 9: 143–156. doi: 10.1163/156855402760116076 CrossRefGoogle Scholar
  21. Mc Cartney LN (1989) New theoretical model of stress transfer between fibre and matrix in a uniaxially fibre-reinforced composite. Proc R Soc Lond A Math Phys Sci 425: 215–244. doi: 10.1098/rspa.1989.0104 CrossRefGoogle Scholar
  22. Mc Clintock FA (1958) Ductile fracture instability in shear. J Appl Mech 25: 582–588Google Scholar
  23. Muller A, Becker W, Stolten D, Hohe J (2006) A hybrid method to assess interface debonding by finite fracture mechanics. Eng Fract Mech 73: 994–1008. doi: 10.1016/j.engfracmech.2005.12.001 CrossRefGoogle Scholar
  24. Nairn JA (2001) Fracture mechanics of composites with residual stresses,imperfect interfaces, and traction-loaded cracks. Compos Sci Technol 61: 2159–2167. doi: 10.1016/S0266-3538(01)00110-5 CrossRefGoogle Scholar
  25. Novozhilov V (1969) On a necessary and sufficient criterion for brittle strength. J Appl Math Mech (translation of PMM) 33: 212–222Google Scholar
  26. Pagano NJ (1998) On the micromechanical failure modes in a class of ideal brittle matrix composites, part 1. Coated-fiber composites. Compos B 29: 93–119. doi: 10.1016/S1359-8368(97)00002-4 Google Scholar
  27. Parmigiani JP, Thouless MD (2006) The roles of thoughness and cohesive strength on crack deflection at interfaces. J Mech Phys Solids 54: 266–287. doi: 10.1016/j.jmps.2005.09.002 CrossRefGoogle Scholar
  28. Phillipps AJ, Clegg WJ, Clyne TW (1994) The failure of layered ceramics in bending and tension. Composites 25: 524–533. doi: 10.1016/0010-4361(94)90180-5 CrossRefGoogle Scholar
  29. Pronin AN, Gupta V (1998) Measurement of thin film interface toughness by using laser-generated stress pulses. J Mech Phys Solids 46: 389–410. doi: 10.1016/S0022-5096(97)00081-1 CrossRefGoogle Scholar
  30. Seweryn A (1994) Brittle fracture criterion for structures with sharp notches. Eng Fract Mech 47: 673–681. doi: 10.1016/0013-7944(94)90158-9 CrossRefGoogle Scholar
  31. Whitney JM, Huismer RJS (1974) Stress fracture criteria for laminated composites containing stress concentrations. J Comp Mater 8: 71–108. doi: 10.1177/002199837400800303 CrossRefGoogle Scholar
  32. Xu LR, Huang YY, Rosakis AJ (2003) Dynamic crack deflection and penetration at interfaces in homogeneous materials: experimental studies and model predictions. J Mech Phys Solids 51: 461–486. doi: 10.1016/S0022-5096(03)00067-X CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • E. Martin
    • 1
  • B. Poitou
    • 1
    • 2
  • D. Leguillon
    • 3
  • J. M. Gatt
    • 2
  1. 1.LCTS, CNRS UMR 5801Université Bordeaux 1PessacFrance
  2. 2.CEA, Cadarache DEN/CAD/DEC/SESCSt Paul lez DuranceFrance
  3. 3.LMM, CNRS UMR 7607Université P. et M. CurieParisFrance

Personalised recommendations