International Journal of Fracture

, Volume 148, Issue 3, pp 273–279 | Cite as

On an Arbitrarily Oriented Crack in a Transversely-isotropic Medium

  • Felicia Guerrero
  • Igor Sevostianov
  • Albert Giraud
Letters in fracture and micromechanics


Transversely-isotropic material with an arbitrarily oriented penny-shaped crack is considered. We calculate fourth-rank compliance contribution tensor of the crack and second-rank crack opening displacement tensor and examine their dependence on crack orientation. It is shown that this dependence for the crack opening displacement tensor is negligible if transverse isotropy has elliptic character, i.e. if material symmetry can be described in terms of a certain second rank tensor.


crack transversely-isotropic material compliance contribution tensor crack opening displacement tensor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bristow J.R. (1960) Microcracks, and the static and dynamic elastic constants of annealed heavily cold-worked metals. British J. Appl. Phys 11, 81–85CrossRefGoogle Scholar
  2. Choy C.L., Leung W.P., Kowk K.W., Lau F.P. (1992) Elastic moduli and thermal conductivity of injection-molded short fiber reinforced thermoplastics, Polymer Composites 13, 69–80CrossRefGoogle Scholar
  3. Dunn M.L., Wienecke H.A. (1997) Inclusions and inhomogeneities in transversely isotropic piezoelectric solids. International Journal of Solids and Structures 34, 3571–3582CrossRefGoogle Scholar
  4. Fabrikant, V.I. (1989)Applications of potential theory in mechanics: A selection of new results. Kluwer.Google Scholar
  5. Giraud A., Huynh Q.V., Hoxha D., Kondo D. (2007) Effective poroelastic properties of transversely isotropic rock-like composites with arbitrarily oriented ellipsoidal inclusions. Mechanics of Materials 39, 1006–1024CrossRefGoogle Scholar
  6. Hashin Z. (1983). Analysis of composite materials - a survey. J.Appl.Mech. 50, 481–505CrossRefGoogle Scholar
  7. Kachanov, M. (1993) Elastic Solids with Many Cracks and Related Problems. In: Advances in Applied Mechanics, 30 (eds. J. Hutchinson and T. Wu), Academic Press, 256–426.Google Scholar
  8. Levin V., Michelitsch Th., Sevostianov I. (2000) Spheroidal inhomogeneity in the transversely isotropic piezoelectric medium, Archive for Applied Mechanics 70, 673–693Google Scholar
  9. Mauge C., Kachanov M. (1994) Effective elastic properties of an anisotropic material with arbitrarily oriented interacting cracks. Journal of the Mechanics and Physics of Solids 42, 561–584CrossRefGoogle Scholar
  10. Mikata Y. (2000) Determination of piezoelectric Eshelby tensor in transversely isotropic piezoelectric solids. International Journal of Engineering Sciences 38, 605–641CrossRefGoogle Scholar
  11. Pan Y.C., Chou T.W. (1976). Point force solution for an infinite transversely-isotropic solid. Journal of Applied Mechanics 43, 608–612Google Scholar
  12. Sevostianov I., Kachanov M. (2008) On approximate elastic symmetries and elliptic orthotropy. International Journal of Engineering Sciences 46, 211–223CrossRefGoogle Scholar
  13. Sevostianov I., Yilmaz N., Kushch V., Levin V. (2005) Effective elastic properties of matrix composites with transversely-isotropic phases. International Journal of Solids and Structures 42, 455–476CrossRefGoogle Scholar
  14. Tsukrov, I. and Kachanov, M. (2000) Effective moduli of an anisotropic material with elliptical holes of arbitrary orientational distribution. International Journal of Solids and Structures, 37, 5919–Google Scholar
  15. Van Buskirk, W.C. and Ashman, R.B. (1981) The elastic moduli of bone. In:Mechanical Properties of Bone (Ed. by Cowin, S. C.), AMD-36, 131–143, ASME, New York.Google Scholar
  16. Withers P.J. (1989) The determination of the elastic field of an ellipsoidal inclusion in a transversely isotropic medium and its relevance to composite materials. Phylosophical Magazine A-59, 759–781CrossRefGoogle Scholar
  17. Yu H.Y., Sanday S.C., Chang C.I. (1994) Elastic inclusions and inhomogeneities in transversely isotropic solids. Proceedings of the Royal Society of London A-444, 239–252Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Felicia Guerrero
    • 1
  • Igor Sevostianov
    • 1
  • Albert Giraud
    • 2
  1. 1.Department of Mechanical EngineeringNew Mexico State UniversityLas CrucesUSA
  2. 2.University Paul-Verlaine, Metz (LPMM)Metz cedexFrance

Personalised recommendations