Advertisement

International Journal of Fracture

, Volume 146, Issue 3, pp 189–195 | Cite as

Analytical Solutions for Stress Intensity Factor, T-Stress and Weight Function for the Edge-Cracked Half-Space

  • Theo Fett
  • Gabriele Rizzi
  • Hans-Achim Bahr
  • Ute Bahr
  • Van-Bac Pham
  • Herbert Balke
Letters in Fracture and Micromechanics

Abstract

An analytical solution for the linear-elastic problem of an edge-cracked semi-infinite body was given already in 1957. For the numerical evaluation of this solution an iteration procedure had to be applied. This might be the reason why the related analysis was not commonly used. By means of powerful mathematical tools developed in the last years it is now possible to evaluate highly-precise stress intensity factors, T-stress terms, weight functions etc. This will be shown in this paper in detail.

Keywords

Edge-cracked half space stress intensity factor T-stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Broberg K.B. (2002). quoted in: S. Melin, The influence of the T-stress on the directional stability of cracks. International Journal of Fracture 114: 259-265CrossRefGoogle Scholar
  2. Fett T. (1998). T-stresses in rectangular plates and circular disks. Engineering Fracture Mechanics 60, 631-652CrossRefGoogle Scholar
  3. Fett, T., Munz, D. (1997). Stress Intensity Factors and Weight Functions, Computational Mechanics Publications, Southampton, UK.Google Scholar
  4. Fett, T. (2002). T-Stress and Stress Intensity Factor Solutions for 2-Dimensional Cracks, VDI-Verlag, Düsseldorf, Germany.Google Scholar
  5. Fett, T., Rizzi, G., Bahr, H.-A., Bahr, U., Pham, V. B., Balke, H. A general weight function approach to compute mode-II stress intensity factors and crack paths for slightly curved or kinked cracks in finite bodies, to be published in Engineering Fracture Mechanics Google Scholar
  6. Mathematica 5.0, Wolfram Research Inc., USA.Google Scholar
  7. Rice J.R. (1972). Some remarks on elastic crack-tip stress fields. International Journal of Solids and Structures 8, 751-758CrossRefGoogle Scholar
  8. Wigglesworth L.A. (1957). Stress distribution in a notched plate. Mathematica 4, 76-96Google Scholar
  9. Williams M.L. (1957). On the stress distribution at the base of a stationary crack. Journal of Applied Mechanics 24: 109-114Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Theo Fett
    • 1
    • 2
  • Gabriele Rizzi
    • 1
  • Hans-Achim Bahr
    • 3
  • Ute Bahr
    • 4
  • Van-Bac Pham
    • 3
  • Herbert Balke
    • 3
  1. 1.Forschungszentrum Karlsruhe, IMF IIKarlsruheGermany
  2. 2.Universität Karlsruhe, Institut für Keramik im MaschinenbauKarlsruheGermany
  3. 3.TU Dresden, Institut für FestkörpermechanikDresdenGermany
  4. 4.TU Dresden, Institut für Theoretische PhysikDresdenGermany

Personalised recommendations