Advertisement

International Journal of Fracture

, Volume 146, Issue 4, pp 291–292 | Cite as

Comment on “comparison of the non-interaction and differential schemes in predicting the effective elastic properties of fractured media” by V. Grechka

  • Erik H. Saenger
Letters in fracture and micromechanics

Keywords

Reflection Coefficient Representative Volume Element Fracture Medium Geophysical Prospect Incline Crack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Grechka V. (2007) Comparison of the non-interacting and differential schemes in predicting the effective elastic properties of fractured media. International Journal of Fracture 144 (3): 181-188CrossRefGoogle Scholar
  2. Krüger O.S., Saenger E.H., Shapiro S.A. (2005) Scattering and diffraction by a single crack: an accuracy analysis of the rotated staggered grid. Geophysical Journal International 162: 25–31CrossRefGoogle Scholar
  3. Krüger O.S., Saenger E.H., Oates S.J, Shapiro S.A. (2007) A numerical study on reflection coefficients of fractured media. Geophysics 72(4): D61-D67CrossRefGoogle Scholar
  4. Saenger E.H., Shapiro S.A. (2002). Effective velocities in fractured media: A numerical study using the rotated staggered finite-difference grid. Geophysical Prospecting 50(2): 183–194CrossRefGoogle Scholar
  5. Saenger E.H., Krüger O.S., Shapiro S.A. (2004). Effective elastic properties of randomly fractured soils: 3D numerical experiments. Geophysical Prospecting 52(3): 183–195CrossRefGoogle Scholar
  6. Saenger E.H., Krüger O.S., Shapiro S.A. (2006). Effective elastic properties of fractured rocks: dynamic vs. static considerations. International Journal of Fracture 139: 569–576CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Geological InstitutETH ZurichZurichSwitzerland
  2. 2.SpectraseisZurichSwitzerland

Personalised recommendations