Advertisement

International Journal of Fracture

, Volume 147, Issue 1–4, pp 3–11 | Cite as

Reciprocity in fracture and defect mechanics

  • R. Kienzler
Original Paper

Abstract

For defects in solids, when displaced within the material, reciprocity relations have been established recently similar to the theorems attributed to Betti and Maxwell. These theorems are applied to crack- and defect-interaction problems.

Keywords

Reciprocity Fracture Defect interaction Material forces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barber JR (2002). Elasticity, 2nd edn. Kluwer, Dordrecht Google Scholar
  2. Budiansky B and Rice J (1973). Conservation laws and energy-release rates. ASME J Appl Mech 40: 201–203 Google Scholar
  3. Erdogan F (1962) On the stress distribution in plates with collinear cuts under arbitrary loads. In: Proceedings of the Fourth U.S. National Congress of Applied Mechanics. ASME 1:547–553Google Scholar
  4. Gross D (1982). Spannungsintensitätsfaktoren von Rißsystemen. Ing Arch 51: 301–310 CrossRefGoogle Scholar
  5. Günther W (1962). Über einige Randintegrale der Elastomechanik. Abh Braunschw Wiss Ges 14: 53–72 Google Scholar
  6. Gurson AL (1977). Continuum theory of ductile rupture by void nucleation and growth. Part I—yield criteria and flow rules for porous ductile media. J Eng Mater Tech 99: 2–15 Google Scholar
  7. Gurtin ME (2000). Configurational forces as basic concepts of continuum physics. Springer, New York Google Scholar
  8. Herrmann G and Kienzler R (2007a). Reciprocity relations in Eshelbian mechanics. Mech Res Commun 34: 338–343 CrossRefGoogle Scholar
  9. Herrmann G, Kienzler R (2007b) A reciprocity relation couples Newtonian and Eshelbian Mechanics. ASME J Appl Mech (in press)Google Scholar
  10. Kienzler R and Herrmann G (2000). Mechanics in material space. Springer, Berlin Google Scholar
  11. Kienzler R, Herrmann G (2007) Nonlinear and linearized reciprocity relations in structural configurational mechanics. Acta Mech doi:  1007/s00707-007-0457-5 Google Scholar
  12. Kienzler R and Kordisch H (1990). Calculation of J 1 and J 2, using the L and M integral. Int J Fract 43: 213–225 CrossRefGoogle Scholar
  13. Knowles JK and Sternberg E (1972). On a class of conservation laws in linearized and finite elastostatics. Arch Rat Mech Anal 44: 187–211 CrossRefGoogle Scholar
  14. Marguerre K (1962) Elasticity, basic concepts. In: Flügge W Handbook of engineering mechanics. McGraw-Hill, New YorkGoogle Scholar
  15. Maugin GA (1993). Material inhomogeneities in elasticity. Chapman & Hall, London Google Scholar
  16. Panasyuk MP, Savruk MP and Datsyshyn AP (1977). A general method of solution of two-dimensional problems in the theory of cracks. Eng Fract Mech 9: 481–497 CrossRefGoogle Scholar
  17. Rice JR (1968). A path independent integral and the approximate analysis of strain concentration by notches and cracks. ASME J Appl Mech 27: 379–386 Google Scholar
  18. Rohde L and Kienzler R (2005). Numerical computation and analytical estimation of stress-intensity factors for strips with multiple edge cracks. Arch Appl Mech 74: 846–852 CrossRefGoogle Scholar
  19. Rohde L, Kienzler R and Herrmann G (2005). On a new method for calculating stress-intensity factors of multiple edge cracks. Phil Mag 85: 4231–4244 CrossRefGoogle Scholar
  20. Schweins G (1849). Fliehmomente oder die Summe (xX + yY) bei Kräften in der Ebene und (xX + yYzZ) bei Kräften im Raume. Crelles J Reine Angew Math 38: 77–88 Google Scholar
  21. Timoshenko SP and Goodier JN (1970). Theory of elasticity, 3rd edn. McGraw-Hill, New York Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Production EngineeringUniversity of BremenBremenGermany

Personalised recommendations