Skip to main content

Advertisement

Log in

Application of Fracture Mechanics Concepts to Hierarchical Biomechanics of Bone and Bone-like Materials

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Fracture mechanics concepts are applied to gain some understanding of the hierarchical nanocomposite structures of hard biological tissues such as bone, tooth and shells. At the most elementary level of structural hierarchy, bone and bone-like materials exhibit a generic structure on the nanometer length scale consisting of hard mineral platelets arranged in a parallel staggered pattern in a soft protein matrix. The discussions in this paper are organized around the following questions: (1) The length scale question: why is nanoscale important to biological materials? (2) The stiffness question: how does nature create a stiff composite containing a high volume fraction of a soft material? (3) The toughness question: how does nature build a tough composite containing a high volume fraction of a brittle material? (4) The strength question: how does nature balance the widely different strengths of protein and mineral? (5) The optimization question: Can the generic nanostructure of bone and bone-like materials be understood from a structural optimization point of view? If so, what is being optimized? What is the objective function? (6) The buckling question: how does nature prevent the slender mineral platelets in bone from buckling under compression? (7) The hierarchy question: why does nature always design hierarchical structures? What is the role of structural hierarchy? A complete analysis of these questions taking into account the full biological complexities is far beyond the scope of this paper. The intention here is only to illustrate some of the basic mechanical design principles of bone-like materials using simple analytical and numerical models. With this objective in mind, the length scale question is addressed based on the principle of flaw tolerance which, in analogy with related concepts in fracture mechanics, indicates that the nanometer size makes the normally brittle mineral crystals insensitive to cracks-like flaws. Below a critical size on the nanometer length scale, the mineral crystals fail no longer by propagation of pre-existing cracks, but by uniform rupture near their limiting strength. The robust design of bone-like materials against brittle fracture provides an interesting analogy between Darwinian competition for survivability and engineering design for notch insensitivity. The follow-up analysis with respect to the questions on stiffness, strength, toughness, stability and optimization of the biological nanostructure provides further insights into the basic design principles of bone and bone-like materials. The staggered nanostructure is shown to be an optimized structure with the hard mineral crystals providing structural rigidity and the soft protein matrix dissipating fracture energy. Finally, the question on structural hierarchy is discussed via a model hierarchical material consisting of multiple levels of self-similar composite structures mimicking the nanostructure of bone. We show that the resulting “fractal bone”, a model hierarchical material with different properties at different length scales, can be designed to tolerate crack-like flaws of multiple length scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • G. Bao Z. Suo (1992) ArticleTitleRemarks on crack-bridging concepts Applied Mechanics Review 45 355–366

    Google Scholar 

  • G.I. Barenblatt (1985) ArticleTitleThe formation of equilibrium cracks during brittle fracture: Rectilinear cracks in plane plates Journal of Applied Mathematics and Mechanics 23 622–636 Occurrence Handle113385 Occurrence Handle10.1016/0021-8928(59)90157-1

    Article  MathSciNet  Google Scholar 

  • Z.P. Bazant (1976) ArticleTitleInstability, ductility and size effect in strain-softening concrete Journal of the Engineering Mechanics Division-ASCE 102 331–344

    Google Scholar 

  • Z.P. Bazant L. Cedolin (1983) ArticleTitleFinite element modeling of crack band propagation Journal of Structural Engineering-ASCE 109 69–92

    Google Scholar 

  • Z.P. Bazant J. Planas (1998) Fracture and Size Effect in Concrete and Other Quasibrittle Materials CRC Press Boca Raton, FL

    Google Scholar 

  • B.A. Bilby A.H. Cottrell K.H. Swinden (1963) ArticleTitleThe spread of plastic yield from a notch Proceedings of the Royal Society of London A 272 304–314 Occurrence Handle1963RSPSA.272..304B

    ADS  Google Scholar 

  • M.L. Bouxsein (2003) ArticleTitleBone quality: where do we go from here? Osteoporosis International 14 S118–S127 Occurrence Handle10.1007/s00198-003-1489-x

    Article  Google Scholar 

  • C. Brett K. Waldron (1981) Physiology and Biochemistry of Plant Cell Walls Chapman & Hall London

    Google Scholar 

  • G.T. Camacho M. Ortiz (1996) ArticleTitleComputational modeling of impact damage in brittle materials International Journal of Solids and Structures 33 2899–2938 Occurrence Handle10.1016/0020-7683(95)00255-3 Occurrence Handle0929.74101

    Article  MATH  Google Scholar 

  • A. Carpinteri (1982) ArticleTitleNotch sensitivity in fracture testing of aggregative materials Engineering Fracture Mechanics 16 467–481 Occurrence Handle10.1016/0013-7944(82)90127-8

    Article  Google Scholar 

  • A. Carpinteri (1997) Structural Mechanics: A Unified Approach Chapman & Hall London Occurrence Handle0863.73004

    MATH  Google Scholar 

  • B.N. Cox D.B. Marshall (1994) ArticleTitleConcepts for bridged cracks in fracture and fatigue Acta Metallurgica et Materialia 42 341–363 Occurrence Handle10.1016/0956-7151(94)90492-8

    Article  Google Scholar 

  • J.D. Currey (1977) ArticleTitleMechanical properties of mother of pearl in tension Proceedings of the Royal Society of London B 196 443–463 Occurrence Handle1977RSPSB.196..443C

    ADS  Google Scholar 

  • J.D. Currey (1984) The Mechanical Adaptations of Bones Princeton University Press Princeton, NJ 24–37

    Google Scholar 

  • W.J. Drugan (2001) ArticleTitleDynamic fragmentation of brittle materials: analytical mechanics-based models Journal of the Mechanics and Physics of Solids 49 1181–1208 Occurrence Handle1015.74048 Occurrence Handle10.1016/S0022-5096(01)00002-3 Occurrence Handle2001JMPSo..49.1181D

    Article  MATH  ADS  Google Scholar 

  • D.S. Dugdale (1960) ArticleTitleYielding of steel sheets containing slits Journal of the Mechanics and Physics of Solids 8 100–104 Occurrence Handle10.1016/0022-5096(60)90013-2 Occurrence Handle1960JMPSo...8..100D

    Article  ADS  Google Scholar 

  • A.G. Evans (1990) ArticleTitleperspective on the development of high-toughness ceramics Journal of the American Ceramic Society 73 187–206 Occurrence Handle10.1111/j.1151-2916.1990.tb06493.x

    Article  Google Scholar 

  • G.E. Fantner H. Birkedal J.H. Kindt T. Hassenkam J.C. Weaver J.A. Cutroni B.L. Bosma L. Bawazer M.M. Finch G.A.G. Cidade D.E. Morse G.D. Stucky P.K. Hansma (2004) ArticleTitleInfluence of the degradation of the organic matrix on the microscopic fracture behavior of trabecular bone Bone 35 1013–1022 Occurrence Handle10.1016/j.bone.2004.05.027

    Article  Google Scholar 

  • Fengel, D. and Wegener, G. (1984). Wood Chemistry, Ultrastructure, Reaction. Walter de Gruter, Berlin.

  • P. Fratzl H.S. Gupta E.P. Paschalis P. Roschger (2004a) ArticleTitleStructure and mechanical quality of the collagen–mineral nano-composite in bone Journal of Materials Chemistry 14 2115–2123 Occurrence Handle10.1039/b402005g

    Article  Google Scholar 

  • P. Fratzl I. Burgert H.S. Gupta (2004b) ArticleTitleOn the role of interface polymers for the mechanics of natural polymeric composites Physical Chemistry Chemical Physics 6 5575–5579 Occurrence Handle10.1039/b411986j

    Article  Google Scholar 

  • H. Gao S. Chen (2005) ArticleTitleFlaw tolerance in a thin strip under tension Journal of Applied Mechanics 72 732–737 Occurrence Handle2183408 Occurrence Handle10.1115/1.1988348 Occurrence Handle1111.74410

    Article  MathSciNet  MATH  Google Scholar 

  • H. Gao B. Ji (2003) ArticleTitleModeling fracture in nanomaterials via a virtual internal bond method Engineering Fracture Mechanics 70 1777–1791 Occurrence Handle10.1016/S0013-7944(03)00124-3

    Article  Google Scholar 

  • H. Gao H. Yao (2004) ArticleTitleShape insensitive optimal adhesion of nanoscale fibrillar structures Proceedings of the National Academy of Sciences of the United States of America 101 7851–7856 Occurrence Handle10.1073/pnas.0400757101 Occurrence Handle2004PNAS..101.7851G

    Article  ADS  Google Scholar 

  • H. Gao B. Ji I.L. Jäger E. Arzt P. Fratzl. (2003) ArticleTitleMaterials become insensitive to flaws at nanoscale: lessons from nature Proceedings of the National Academy of Sciences of the United States of America 100 5597–5600 Occurrence Handle10.1073/pnas.0631609100 Occurrence Handle2003PNAS..100.5597G

    Article  ADS  Google Scholar 

  • H. Gao B. Ji M.J. Buehler H. Yao (2004) ArticleTitleFlaw tolerant bulk and surface nanostructures of biological systems Mechanics and Chemistry of Biosystems 1 37–52

    Google Scholar 

  • H. Gao X. Wang H. Yao S. Gorb E. Arzt (2005) ArticleTitleMechanics of hierarchical adhesion structure of gecko Mechanics of Materials 37 275–285 Occurrence Handle10.1016/j.mechmat.2004.03.008

    Article  Google Scholar 

  • Goldberg, D. (1989), Genetic Algorithm in Search, Optimization, and Machine Learning. Addison Wesley.

  • Guo, X. and Gao, H. (2005). Bio-inspired material design and optimization. IUTAM Symposium on topological design optimization of structures, machines and materials – status and perspectives, October 26–29, 2005, Rungstedgaard, Copenhagen, Denmark.

  • T. Hassenkam G.E. Fantner J.A. Cutroni J.C. Weaver D.E. Morse P.K. Hansma (2004) ArticleTitleHigh-resolution AFM imaging of intact and fractured trabecular bone Bone 35 4–10 Occurrence Handle10.1016/j.bone.2004.02.024

    Article  Google Scholar 

  • A. Hillerborg M. Modeer P.E. Petersson (1976) ArticleTitleAnalysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements Cement and Concrete Research 6 773–782 Occurrence Handle10.1016/0008-8846(76)90007-7

    Article  Google Scholar 

  • A.P. Jackson J.F.V. Vincent R.M. Turner (1988) ArticleTitleThe mechanical design of nacre Proceedings of the Royal Society of London B 234 415–440 Occurrence Handle1988RSPSB.234..415J Occurrence Handle10.1098/rspb.1988.0056

    Article  ADS  Google Scholar 

  • I. Jäger P. Fratzl (2000) ArticleTitleMineralized collagen Mbrils: a mechanical model with a staggered arrangement of mineral particles Biophysical Journal 79 1737–1746 Occurrence Handle10.1016/S0006-3495(00)76426-5

    Article  Google Scholar 

  • B. Ji H. Gao (2004a) ArticleTitleMechanical properties of nanostructure of biological materials Journal of the Mechanics and Physics of Solids 52 1963–1990 Occurrence Handle10.1016/j.jmps.2004.03.006 Occurrence Handle1115.74348 Occurrence Handle2004JMPSo..52.1963J

    Article  MATH  ADS  Google Scholar 

  • B. Ji H. Gao (2004b) ArticleTitleA study of fracture mechanisms in biological nano-composites via the virtual internal bond model Materials Science and Engineering A 366 96–103 Occurrence Handle10.1016/j.msea.2003.08.121

    Article  Google Scholar 

  • Ji, B. and Gao, H. (2006) Elastic properties of nanocomposite structure of bone. Composite Science and Technology, in press.

  • B. Ji H. Gao K.J. Hsia (2004a) ArticleTitleHow do slender mineral crystals resist buckling in biological materials? Philosophical Magazine Letters 84 631–641 Occurrence Handle10.1080/09500830512331329141 Occurrence Handle2004PMagL..84..631J

    Article  ADS  Google Scholar 

  • B. Ji H. Gao T.C. Wang (2004b) ArticleTitleFlow stress of biomorphous metal–matrix composites Materials Science and Engineering A 386 435–441 Occurrence Handle10.1016/j.msea.2004.07.060

    Article  Google Scholar 

  • H.D. Jiang X.Y. Liu C.T. Lim C.Y. Hsu (2005) ArticleTitleOrdering of self-assembled nanobiominerals in correlation to mechanical properties of hard tissues Applied Physics Letters 86 163901 Occurrence Handle10.1063/1.1906295 Occurrence Handle2005ApPhL..86p3901J

    Article  ADS  Google Scholar 

  • S. Kamat X. Su R. Ballarini A.H. Heuer (2000) ArticleTitleStructural basis for the fracture toughness of the shell of the conch Strombus gigas Nature 405 1036–1040 Occurrence Handle10.1038/35016535 Occurrence Handle2000Natur.405.1036K

    Article  ADS  Google Scholar 

  • B.L. Karihaloo (1979) ArticleTitleA note on complexities of compression failure Proceedings of the Royal Society of London A 368 483–493 Occurrence Handle1979RSPSA.368..483K

    ADS  Google Scholar 

  • F. Kauffmann B. Ji G. Dehm H. Gao E. Arzt (2005) ArticleTitleA quantitative study of the hardness in a superhard nanocrystalline titanium nitride/silicon nitride coating Scripta Materialia 52 1269–1274 Occurrence Handle10.1016/j.scriptamat.2005.02.024

    Article  Google Scholar 

  • K. Kendall (1978) ArticleTitleComplexities of compression failure Proceedings of the Royal Society of London A 361 245–263 Occurrence Handle1978RSPSA.361..245K Occurrence Handle10.1098/rspa.1978.0101

    Article  ADS  Google Scholar 

  • H. Kessler R. Ballarini R.L. Mullen L.T. Kuhn A.H. Heuer (1996) ArticleTitleA biomimetic example of brittle toughening: (I) steady state multiple cracking Computational Materials Science 5 157–166 Occurrence Handle10.1016/0927-0256(95)00067-4

    Article  Google Scholar 

  • S.P. Kotha S. Kotha N. Guzelsu (2000) ArticleTitleA shear-lag model to account for interaction effects between inclusions in composites reinforced with rectangular platelets Composites Science and Technology 60 2147–2158 Occurrence Handle10.1016/S0266-3538(00)00114-7

    Article  Google Scholar 

  • W.J. Landis (1995) ArticleTitleThe strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix Bone 16 533–544 Occurrence Handle10.1016/8756-3282(95)00076-P

    Article  Google Scholar 

  • W.J. Landis K.J. Hodgens M.J. Song J. Arena S. Kiyonaga M. Marko C. Owen B.F. McEwen (1996) ArticleTitleMineralization of collagen may occur on fibril surfaces: evidence from conventional and high voltage electron microscopy and three dimensional imaging Journal of Structural Biology 117 24–35 Occurrence Handle10.1006/jsbi.1996.0066

    Article  Google Scholar 

  • Liu, B., Zhang, L. and Gao, H. (2006). Poisson ratio can play a crucial role in mechanical properties of biocomposites. Mechanics of Materials, in press.

  • J.F. Mano (2005) ArticleTitleViscoelastic properties of bone: mechanical spectroscopy studies on a chicken model Materials Science and Engineering C 25 145–152 Occurrence Handle10.1016/j.msec.2005.01.017

    Article  Google Scholar 

  • R. Massabo B.N. Cox (1999) ArticleTitleConcepts for bridged mode II delamination cracks Journal of the Mechanics and Physics of Solids 47 1265–1300 Occurrence Handle10.1016/S0022-5096(98)00107-0 Occurrence Handle0962.74054 Occurrence Handle1999JMPSo..47.1265M

    Article  MATH  ADS  Google Scholar 

  • R. Menig M.H. Meyers M.A. Meyers K.S. Vecchio (2000) ArticleTitleQuasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells Acta Materialia 48 2383–2398 Occurrence Handle10.1016/S1359-6454(99)00443-7

    Article  Google Scholar 

  • R. Menig M.H. Meyers M.A. Meyers K.S. Vecchio (2001) ArticleTitleQuasi-static and dynamic mechanical response of Strombus gigas (conch) shells Materials Science and Engineering A 297 203–211 Occurrence Handle10.1016/S0921-5093(00)01228-4

    Article  Google Scholar 

  • T. Mori K. Tanaka (1973) ArticleTitleAverage stress in matrix and average elastic energy of materials with misfitting inclusion Acta Metalurgica 21 571–574 Occurrence Handle10.1016/0001-6160(73)90064-3

    Article  Google Scholar 

  • S.V. Mulmule J.P. Dempsey (2000) ArticleTitleLEFM size requirement for the fracture testing of sea ice International Journal of Fracture 102 85–98 Occurrence Handle10.1023/A:1007603428907

    Article  Google Scholar 

  • A. Needleman (1987) ArticleTitleA continuum model for void nucleation by inclusion debonding Journal of Applied Mechanics 54 525–531 Occurrence Handle0626.73010 Occurrence Handle10.1115/1.3173064

    Article  MATH  Google Scholar 

  • N.M. Neves J.F. Mano (2005) ArticleTitleStructure/mechanical behavior relationships in crossed-lamellar sea shells Materials Science and Engineering C 25 113–118 Occurrence Handle10.1016/j.msec.2005.01.004

    Article  Google Scholar 

  • K. Okumura P.-G. Gennes Particlede (2001) ArticleTitleWhy is nacre strong? Elastic theory and fracture mechanics for biocomposites with stratified structures European Physical Journal E 4 121–127 Occurrence Handle10.1007/s101890170150 Occurrence Handle2001EPJE....4..121O

    Article  ADS  Google Scholar 

  • N.M. Pugno R.S. Ruoff (2004) ArticleTitleQuantized fracture mechanics Philosophical Magazine 84 2829–2845 Occurrence Handle10.1080/14786430412331280382 Occurrence Handle2004PMag...84.2829R

    Article  ADS  Google Scholar 

  • J.Y. Rho L. Kuhn-Spearing P. Zioupos (1998) ArticleTitleMechanical properties and the hierarchical structure of bone Medical Engineering & Physics 20 92–102 Occurrence Handle10.1016/S1350-4533(98)00007-1

    Article  Google Scholar 

  • Rice, J.R. (1980). The Mechanics of Earthquake Rupture. International School of Physics “E. Fermi”, Course 78, 1979: Italian Physical Society/North Holland Publ. Co.

  • P. Roschger B.M. Grabner S. Rinnerthaler W. Tesch M. Kneissel A. Berzlanovich K. Klaushofer P. Fratzl (2001) ArticleTitleStructural development of the mineralized tissue in the human L4 vertebral body Journal of Structural Biology 136 126–136 Occurrence Handle10.1006/jsbi.2001.4427

    Article  Google Scholar 

  • P. Roschger K. Matsuo B.M. Misof W. Tesch W. Jochum E.F. Wagner P. Fratzl K. Klaushofer (2004) ArticleTitleNormal mineralization and nanostructure of sclerotic bone in mice overexpressing Fra-1 Bone 34 776–782 Occurrence Handle10.1016/j.bone.2004.01.004

    Article  Google Scholar 

  • B.L. Smith T.E. Schaeffer M. Viani J.B. Thompson N.A. Frederick J. Kindt A. Belcher G.D. Stucky D.E. Morse P.K. Hansma (1999) ArticleTitleMolecular mechanistic origin of the toughness of natural adhesive, fibres and composites Nature 399 761–763 Occurrence Handle10.1038/21607 Occurrence Handle1999Natur.399..761S

    Article  ADS  Google Scholar 

  • F. Song A.K. Soh Y.L. Bai (2003) ArticleTitleStructural and mechanical properties of the organic matrix layers of nacre Biomaterials 24 3623–3631 Occurrence Handle10.1016/S0142-9612(03)00215-1

    Article  Google Scholar 

  • Z. Suo S. Ho X. Gong (1993) ArticleTitleNotch ductile-to-brittle transition due to localized inelastic band Journal of Engineering Materials and Technology 115 319–326

    Google Scholar 

  • Tada, J., Paris, P.C. and Irwin, G.R. (1973). The Stress Analysis of Cracks Handbook. Del Research Corporation, St. Louis (2nd edition, 1985).

  • R.K. Tang L.J. Wang C.A. Orme T. Bonstein P.J. Bush G.H. Nancollas (2004) ArticleTitleDissolution at the nanoscale: Self-preservation of biominerals Angewandte Chemie-International Edition 43 2697–2701 Occurrence Handle10.1002/anie.200353652

    Article  Google Scholar 

  • T. Tang C.-Y. Hui N.J. Glassmaker (2005) ArticleTitleCan a fibrillar interface be stronger and tougher than a non-fibrillar one? Journal of the Royal Society Interface 2 505–516 Occurrence Handle10.1098/rsif.2005.0070

    Article  Google Scholar 

  • W. Tesch N. Eidelman P. Roschger F. Goldenberg K. Klaushofer P. Fratzl (2001) ArticleTitleGraded microstructure and mechanical properties of human crown dentin Calcified Tissue International 69 147–157 Occurrence Handle10.1007/s00223-001-2012-z

    Article  Google Scholar 

  • J.B. Thompson J.H. Kindt B. Drake H.G. Hansma D.E. Morse P.K. Hansma (2001) ArticleTitleBone indentation recovery time correlates with bond reforming time Nature 414 773–776 Occurrence Handle10.1038/414773a Occurrence Handle2001Natur.414..773T

    Article  ADS  Google Scholar 

  • V. Tvergaard J.W. Hutchinson (1992) ArticleTitleThe relation between crack growth resistance and fracture process parameters in elastic–plastic solids Journal of the Mechanics and Physics of Solids 40 1377–1397 Occurrence Handle10.1016/0022-5096(92)90020-3 Occurrence Handle0775.73218 Occurrence Handle1992JMPSo..40.1377T

    Article  MATH  ADS  Google Scholar 

  • R.Z. Wang Z. Suo A.G. Evans N. Yao I.A. Aksay (2001) ArticleTitleDeformation mechanisms in nacre Journal of Materials Research 16 2485–2493 Occurrence Handle2001JMatR..16.2485W

    ADS  Google Scholar 

  • L.J. Wang R.K. Tang T. Bonstein C.A. Orme P.J. Bush G.H. Nancollas (2005) ArticleTitleA new model for nanoscale enamel dissolution Journal of Physical Chemistry B 109 999–1005 Occurrence Handle10.1021/jp046451d

    Article  Google Scholar 

  • H. Warshawsky (1989) ArticleTitleOrganization of crystals in enamel Anatomical Record 224 242–262 Occurrence Handle10.1002/ar.1092240214

    Article  Google Scholar 

  • S. Weiner H.D. Wagner (1998) ArticleTitleThe material bone: structure–mechanical function relations Annual Review of Materials Science 28 271–298 Occurrence Handle10.1146/annurev.matsci.28.1.271

    Article  Google Scholar 

  • X.P. Xu A. Needleman (1994) ArticleTitleNumerical simulations of fast crack-growth in brittle solids Journal of the Mechanics and Physics of Solids 42 1397–1434 Occurrence Handle10.1016/0022-5096(94)90003-5 Occurrence Handle0825.73579 Occurrence Handle1994JMPSo..42.1397X

    Article  MATH  ADS  Google Scholar 

  • Yao, H. and Gao, H. (2006). Mechanics of robust and releasable adhesion in biology: bottom-up designed hierarchical structures of gecko. Journal of the Mechanics and Physics of Solids, in press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huajian Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, H. Application of Fracture Mechanics Concepts to Hierarchical Biomechanics of Bone and Bone-like Materials. Int J Fract 138, 101–137 (2006). https://doi.org/10.1007/s10704-006-7156-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-006-7156-4

Keywords

Navigation