Application of Fracture Mechanics Concepts to Hierarchical Biomechanics of Bone and Bone-like Materials



Fracture mechanics concepts are applied to gain some understanding of the hierarchical nanocomposite structures of hard biological tissues such as bone, tooth and shells. At the most elementary level of structural hierarchy, bone and bone-like materials exhibit a generic structure on the nanometer length scale consisting of hard mineral platelets arranged in a parallel staggered pattern in a soft protein matrix. The discussions in this paper are organized around the following questions: (1) The length scale question: why is nanoscale important to biological materials? (2) The stiffness question: how does nature create a stiff composite containing a high volume fraction of a soft material? (3) The toughness question: how does nature build a tough composite containing a high volume fraction of a brittle material? (4) The strength question: how does nature balance the widely different strengths of protein and mineral? (5) The optimization question: Can the generic nanostructure of bone and bone-like materials be understood from a structural optimization point of view? If so, what is being optimized? What is the objective function? (6) The buckling question: how does nature prevent the slender mineral platelets in bone from buckling under compression? (7) The hierarchy question: why does nature always design hierarchical structures? What is the role of structural hierarchy? A complete analysis of these questions taking into account the full biological complexities is far beyond the scope of this paper. The intention here is only to illustrate some of the basic mechanical design principles of bone-like materials using simple analytical and numerical models. With this objective in mind, the length scale question is addressed based on the principle of flaw tolerance which, in analogy with related concepts in fracture mechanics, indicates that the nanometer size makes the normally brittle mineral crystals insensitive to cracks-like flaws. Below a critical size on the nanometer length scale, the mineral crystals fail no longer by propagation of pre-existing cracks, but by uniform rupture near their limiting strength. The robust design of bone-like materials against brittle fracture provides an interesting analogy between Darwinian competition for survivability and engineering design for notch insensitivity. The follow-up analysis with respect to the questions on stiffness, strength, toughness, stability and optimization of the biological nanostructure provides further insights into the basic design principles of bone and bone-like materials. The staggered nanostructure is shown to be an optimized structure with the hard mineral crystals providing structural rigidity and the soft protein matrix dissipating fracture energy. Finally, the question on structural hierarchy is discussed via a model hierarchical material consisting of multiple levels of self-similar composite structures mimicking the nanostructure of bone. We show that the resulting “fractal bone”, a model hierarchical material with different properties at different length scales, can be designed to tolerate crack-like flaws of multiple length scales.


Biological materials bone buckling flaw tolerance fracture hierarchical materials nacre size effects stiffness strength structural optimization toughness 


  1. Bao, G., Suo, Z. 1992Remarks on crack-bridging conceptsApplied Mechanics Review45355366Google Scholar
  2. Barenblatt, G.I. 1985The formation of equilibrium cracks during brittle fracture: Rectilinear cracks in plane platesJournal of Applied Mathematics and Mechanics23622636MathSciNetCrossRefGoogle Scholar
  3. Bazant, Z.P. 1976Instability, ductility and size effect in strain-softening concreteJournal of the Engineering Mechanics Division-ASCE102331344Google Scholar
  4. Bazant, Z.P., Cedolin, L. 1983Finite element modeling of crack band propagationJournal of Structural Engineering-ASCE1096992Google Scholar
  5. Bazant, Z.P., Planas, J. 1998Fracture and Size Effect in Concrete and Other Quasibrittle MaterialsCRC PressBoca Raton, FLGoogle Scholar
  6. Bilby, B.A., Cottrell, A.H., Swinden, K.H. 1963The spread of plastic yield from a notchProceedings of the Royal Society of London A272304314ADSGoogle Scholar
  7. Bouxsein, M.L. 2003Bone quality: where do we go from here?Osteoporosis International14S118S127CrossRefGoogle Scholar
  8. Brett, C., Waldron, K. 1981Physiology and Biochemistry of Plant Cell WallsChapman & HallLondonGoogle Scholar
  9. Camacho, G.T., Ortiz, M. 1996Computational modeling of impact damage in brittle materialsInternational Journal of Solids and Structures3328992938CrossRefMATHGoogle Scholar
  10. Carpinteri, A. 1982Notch sensitivity in fracture testing of aggregative materialsEngineering Fracture Mechanics16467481CrossRefGoogle Scholar
  11. Carpinteri, A. 1997Structural Mechanics: A Unified ApproachChapman & HallLondonMATHGoogle Scholar
  12. Cox, B.N., Marshall, D.B. 1994Concepts for bridged cracks in fracture and fatigueActa Metallurgica et Materialia42341363CrossRefGoogle Scholar
  13. Currey, J.D. 1977Mechanical properties of mother of pearl in tensionProceedings of the Royal Society of London B196443463ADSGoogle Scholar
  14. Currey, J.D. 1984The Mechanical Adaptations of BonesPrinceton University PressPrinceton, NJ2437Google Scholar
  15. Drugan, W.J. 2001Dynamic fragmentation of brittle materials: analytical mechanics-based modelsJournal of the Mechanics and Physics of Solids4911811208MATHCrossRefADSGoogle Scholar
  16. Dugdale, D.S. 1960Yielding of steel sheets containing slitsJournal of the Mechanics and Physics of Solids8100104CrossRefADSGoogle Scholar
  17. Evans, A.G. 1990perspective on the development of high-toughness ceramicsJournal of the American Ceramic Society73187206CrossRefGoogle Scholar
  18. Fantner, G.E., Birkedal, H., Kindt, J.H., Hassenkam, T., Weaver, J.C., Cutroni, J.A., Bosma, B.L., Bawazer, L., Finch, M.M., Cidade, G.A.G., Morse, D.E., Stucky, G.D., Hansma, P.K. 2004Influence of the degradation of the organic matrix on the microscopic fracture behavior of trabecular boneBone3510131022CrossRefGoogle Scholar
  19. Fengel, D. and Wegener, G. (1984). Wood Chemistry, Ultrastructure, Reaction. Walter de Gruter, Berlin.Google Scholar
  20. Fratzl, P., Gupta, H.S., Paschalis, E.P., Roschger, P. 2004aStructure and mechanical quality of the collagen–mineral nano-composite in boneJournal of Materials Chemistry1421152123CrossRefGoogle Scholar
  21. Fratzl, P., Burgert, I., Gupta, H.S. 2004bOn the role of interface polymers for the mechanics of natural polymeric compositesPhysical Chemistry Chemical Physics655755579CrossRefGoogle Scholar
  22. Gao, H., Chen, S. 2005Flaw tolerance in a thin strip under tensionJournal of Applied Mechanics72732737MathSciNetCrossRefMATHGoogle Scholar
  23. Gao, H., Ji, B. 2003Modeling fracture in nanomaterials via a virtual internal bond methodEngineering Fracture Mechanics7017771791CrossRefGoogle Scholar
  24. Gao, H., Yao, H. 2004Shape insensitive optimal adhesion of nanoscale fibrillar structuresProceedings of the National Academy of Sciences of the United States of America10178517856CrossRefADSGoogle Scholar
  25. Gao, H., Ji, B., Jäger, I.L., Arzt, E., Fratzl., P. 2003Materials become insensitive to flaws at nanoscale: lessons from natureProceedings of the National Academy of Sciences of the United States of America10055975600CrossRefADSGoogle Scholar
  26. Gao, H., Ji, B., Buehler, M.J., Yao, H. 2004Flaw tolerant bulk and surface nanostructures of biological systemsMechanics and Chemistry of Biosystems13752Google Scholar
  27. Gao, H., Wang, X., Yao, H., Gorb, S., Arzt, E. 2005Mechanics of hierarchical adhesion structure of geckoMechanics of Materials37275285CrossRefGoogle Scholar
  28. Goldberg, D. (1989), Genetic Algorithm in Search, Optimization, and Machine Learning. Addison Wesley.Google Scholar
  29. Guo, X. and Gao, H. (2005). Bio-inspired material design and optimization. IUTAM Symposium on topological design optimization of structures, machines and materials – status and perspectives, October 26–29, 2005, Rungstedgaard, Copenhagen, Denmark.Google Scholar
  30. Hassenkam, T., Fantner, G.E., Cutroni, J.A., Weaver, J.C., Morse, D.E., Hansma, P.K. 2004High-resolution AFM imaging of intact and fractured trabecular boneBone35410CrossRefGoogle Scholar
  31. Hillerborg, A., Modeer, M., Petersson, P.E. 1976Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elementsCement and Concrete Research6773782CrossRefGoogle Scholar
  32. Jackson, A.P., Vincent, J.F.V., Turner, R.M. 1988The mechanical design of nacreProceedings of the Royal Society of London B234415440ADSCrossRefGoogle Scholar
  33. Jäger, I., Fratzl, P. 2000Mineralized collagen Mbrils: a mechanical model with a staggered arrangement of mineral particlesBiophysical Journal7917371746CrossRefGoogle Scholar
  34. Ji, B., Gao, H. 2004aMechanical properties of nanostructure of biological materialsJournal of the Mechanics and Physics of Solids5219631990CrossRefMATHADSGoogle Scholar
  35. Ji, B., Gao, H. 2004bA study of fracture mechanisms in biological nano-composites via the virtual internal bond modelMaterials Science and Engineering A36696103CrossRefGoogle Scholar
  36. Ji, B. and Gao, H. (2006) Elastic properties of nanocomposite structure of bone. Composite Science and Technology, in press.Google Scholar
  37. Ji, B., Gao, H., Hsia, K.J. 2004aHow do slender mineral crystals resist buckling in biological materials?Philosophical Magazine Letters84631641CrossRefADSGoogle Scholar
  38. Ji, B., Gao, H., Wang, T.C. 2004bFlow stress of biomorphous metal–matrix compositesMaterials Science and Engineering A386435441CrossRefGoogle Scholar
  39. Jiang, H.D., Liu, X.Y., Lim, C.T., Hsu, C.Y. 2005Ordering of self-assembled nanobiominerals in correlation to mechanical properties of hard tissuesApplied Physics Letters86163901CrossRefADSGoogle Scholar
  40. Kamat, S., Su, X., Ballarini, R., Heuer, A.H. 2000Structural basis for the fracture toughness of the shell of the conch Strombus gigasNature40510361040CrossRefADSGoogle Scholar
  41. Karihaloo, B.L. 1979A note on complexities of compression failureProceedings of the Royal Society of London A368483493ADSGoogle Scholar
  42. Kauffmann, F., Ji, B., Dehm, G., Gao, H., Arzt, E. 2005A quantitative study of the hardness in a superhard nanocrystalline titanium nitride/silicon nitride coatingScripta Materialia5212691274CrossRefGoogle Scholar
  43. Kendall, K. 1978Complexities of compression failureProceedings of the Royal Society of London A361245263ADSCrossRefGoogle Scholar
  44. Kessler, H., Ballarini, R., Mullen, R.L., Kuhn, L.T., Heuer, A.H. 1996A biomimetic example of brittle toughening: (I) steady state multiple crackingComputational Materials Science5157166CrossRefGoogle Scholar
  45. Kotha, S.P., Kotha, S., Guzelsu, N. 2000A shear-lag model to account for interaction effects between inclusions in composites reinforced with rectangular plateletsComposites Science and Technology6021472158CrossRefGoogle Scholar
  46. Landis, W.J. 1995The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrixBone16533544CrossRefGoogle Scholar
  47. Landis, W.J., Hodgens, K.J., Song, M.J., Arena, J., Kiyonaga, S., Marko, M., Owen, C., McEwen, B.F. 1996Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high voltage electron microscopy and three dimensional imagingJournal of Structural Biology1172435CrossRefGoogle Scholar
  48. Liu, B., Zhang, L. and Gao, H. (2006). Poisson ratio can play a crucial role in mechanical properties of biocomposites. Mechanics of Materials, in press.Google Scholar
  49. Mano, J.F. 2005Viscoelastic properties of bone: mechanical spectroscopy studies on a chicken modelMaterials Science and Engineering C25145152CrossRefGoogle Scholar
  50. Massabo, R., Cox, B.N. 1999Concepts for bridged mode II delamination cracksJournal of the Mechanics and Physics of Solids4712651300CrossRefMATHADSGoogle Scholar
  51. Menig, R., Meyers, M.H., Meyers, M.A., Vecchio, K.S. 2000Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shellsActa Materialia4823832398CrossRefGoogle Scholar
  52. Menig, R., Meyers, M.H., Meyers, M.A., Vecchio, K.S. 2001Quasi-static and dynamic mechanical response of Strombus gigas (conch) shellsMaterials Science and Engineering A297203211CrossRefGoogle Scholar
  53. Mori, T., Tanaka, K. 1973Average stress in matrix and average elastic energy of materials with misfitting inclusionActa Metalurgica21571574CrossRefGoogle Scholar
  54. Mulmule, S.V., Dempsey, J.P. 2000LEFM size requirement for the fracture testing of sea iceInternational Journal of Fracture1028598CrossRefGoogle Scholar
  55. Needleman, A. 1987A continuum model for void nucleation by inclusion debondingJournal of Applied Mechanics54525531MATHCrossRefGoogle Scholar
  56. Neves, N.M., Mano, J.F. 2005Structure/mechanical behavior relationships in crossed-lamellar sea shellsMaterials Science and Engineering C25113118CrossRefGoogle Scholar
  57. Okumura, K., Gennes, P.-G. 2001Why is nacre strong? Elastic theory and fracture mechanics for biocomposites with stratified structuresEuropean Physical Journal E4121127CrossRefADSGoogle Scholar
  58. Pugno, N.M., Ruoff, R.S. 2004Quantized fracture mechanicsPhilosophical Magazine8428292845CrossRefADSGoogle Scholar
  59. Rho, J.Y., Kuhn-Spearing, L., Zioupos, P. 1998Mechanical properties and the hierarchical structure of boneMedical Engineering & Physics2092102CrossRefGoogle Scholar
  60. Rice, J.R. (1980). The Mechanics of Earthquake Rupture. International School of Physics “E. Fermi”, Course 78, 1979: Italian Physical Society/North Holland Publ. Co.Google Scholar
  61. Roschger, P., Grabner, B.M., Rinnerthaler, S., Tesch, W., Kneissel, M., Berzlanovich, A., Klaushofer, K., Fratzl, P. 2001Structural development of the mineralized tissue in the human L4 vertebral bodyJournal of Structural Biology136126136CrossRefGoogle Scholar
  62. Roschger, P., Matsuo, K., Misof, B.M., Tesch, W., Jochum, W., Wagner, E.F., Fratzl, P., Klaushofer, K. 2004Normal mineralization and nanostructure of sclerotic bone in mice overexpressing Fra-1Bone34776782CrossRefGoogle Scholar
  63. Smith, B.L., Schaeffer, T.E., Viani, M., Thompson, J.B., Frederick, N.A., Kindt, J., Belcher, A., Stucky, G.D., Morse, D.E., Hansma, P.K. 1999Molecular mechanistic origin of the toughness of natural adhesive, fibres and compositesNature399761763CrossRefADSGoogle Scholar
  64. Song, F., Soh, A.K., Bai, Y.L. 2003Structural and mechanical properties of the organic matrix layers of nacreBiomaterials2436233631CrossRefGoogle Scholar
  65. Suo, Z., Ho, S., Gong, X. 1993Notch ductile-to-brittle transition due to localized inelastic bandJournal of Engineering Materials and Technology115319326Google Scholar
  66. Tada, J., Paris, P.C. and Irwin, G.R. (1973). The Stress Analysis of Cracks Handbook. Del Research Corporation, St. Louis (2nd edition, 1985).Google Scholar
  67. Tang, R.K., Wang, L.J., Orme, C.A., Bonstein, T., Bush, P.J., Nancollas, G.H. 2004Dissolution at the nanoscale: Self-preservation of biomineralsAngewandte Chemie-International Edition4326972701CrossRefGoogle Scholar
  68. Tang, T., Hui, C.-Y., Glassmaker, N.J. 2005Can a fibrillar interface be stronger and tougher than a non-fibrillar one?Journal of the Royal Society Interface2505516CrossRefGoogle Scholar
  69. Tesch, W., Eidelman, N., Roschger, P., Goldenberg, F., Klaushofer, K., Fratzl, P. 2001Graded microstructure and mechanical properties of human crown dentinCalcified Tissue International69147157CrossRefGoogle Scholar
  70. Thompson, J.B., Kindt, J.H., Drake, B., Hansma, H.G., Morse, D.E., Hansma, P.K. 2001Bone indentation recovery time correlates with bond reforming timeNature414773776CrossRefADSGoogle Scholar
  71. Tvergaard, V., Hutchinson, J.W. 1992The relation between crack growth resistance and fracture process parameters in elastic–plastic solidsJournal of the Mechanics and Physics of Solids4013771397CrossRefMATHADSGoogle Scholar
  72. Wang, R.Z., Suo, Z., Evans, A.G., Yao, N., Aksay, I.A. 2001Deformation mechanisms in nacreJournal of Materials Research1624852493ADSGoogle Scholar
  73. Wang, L.J., Tang, R.K., Bonstein, T., Orme, C.A., Bush, P.J., Nancollas, G.H. 2005A new model for nanoscale enamel dissolutionJournal of Physical Chemistry B1099991005CrossRefGoogle Scholar
  74. Warshawsky, H. 1989Organization of crystals in enamelAnatomical Record224242262CrossRefGoogle Scholar
  75. Weiner, S., Wagner, H.D. 1998The material bone: structure–mechanical function relationsAnnual Review of Materials Science28271298CrossRefGoogle Scholar
  76. Xu, X.P., Needleman, A. 1994Numerical simulations of fast crack-growth in brittle solidsJournal of the Mechanics and Physics of Solids4213971434CrossRefMATHADSGoogle Scholar
  77. Yao, H. and Gao, H. (2006). Mechanics of robust and releasable adhesion in biology: bottom-up designed hierarchical structures of gecko. Journal of the Mechanics and Physics of Solids, in press.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Max Planck Institute for Metals ResearchStuttgartGermany
  2. 2.Division of EngineeringBrown UniversityProvidenceUSA

Personalised recommendations