International Journal of Fracture

, Volume 140, Issue 1–4, pp 15–26 | Cite as

Surfaces formed by subcritical crack growth in silicate glasses

  • J. P. Guin
  • S. M. Wiederhorn


The topography of surfaces formed in glass by subcritical crack growth was investigated by a method of mapping using atomic force microscopy. The objective of the study was to determine how well “upper” and “lower” surfaces matched after having been formed by a crack moving at slow velocity. The question arose, were features left in the fracture surfaces of silicate glasses that would indicate the formation of cavities during the fracture process? Studies were performed on silica glass and soda-lime-silicate glass. Fracture surfaces were formed either in water or in moist environments at velocities that ranged from 10−2 m/s down to 10−10 m/s. This procedure covered almost the entire range of velocities used for subcritical crack growth experiments in glass. Opposing fracture surfaces formed during our studies were found to “match” over the entire range of velocities and for all environments studied. For silica glass, the surfaces were found to match to an accuracy of better than 0.3 nm normal to the fracture surface and 5 nm within the fracture surface. For soda-lime-silicate glass, surfaces were found to match to an accuracy of 0.5 nm to 0.8 nm normal to the fracture surface and 5 nm within the fracture surface. Within these limits, no evidence for cavitation was found in either glass.


Atomic force microscopy cavitation fracture glass subcritical crack growth 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Guilloteau, E., Charrue, H., Creuzet, F. 1996The direct observation of the core region of a propagating fracture crack in glassEurophysics Letters34549553CrossRefADSGoogle Scholar
  2. Hénaux, S., Creuzet, F. 2000Crack tip morphology of slowly growing cracks in glassJournal of Am. Ceram. Society83415417CrossRefGoogle Scholar
  3. Célarié, F., Prades, S., Bonamy, D., Ferrero, L., Bouchaud, E., Guillot, C., Marlière, C. 2003aGlass breaks like metals, but at the nanometer scalePhysical Review Letters90075504CrossRefADSGoogle Scholar
  4. Célarié, F., Prades, S., Bonamy, D., Dickelé, A., Bouchaud, E., Guillot, C., Marlière, C. 2003bSurface fracture of glassy materials as detected by real-time atomic force microscopy (AFM) experimentsApplied Surface Science212–2139296CrossRefGoogle Scholar
  5. Janssen, C. (1974). Specimen for fracture mechanics studies on glass, pp. 10.23–10.30 in Proceedings of Tenth International Congress on Glass (Kyoto, Japan July 1974). Ceramic Society of Japan, Tokyo, Japan.Google Scholar
  6. Michalske, T.A. 1993Stress intensity calibration for the double cleavage drilled compression specimenEngineering Fracture Mechanics45637CrossRefGoogle Scholar
  7. He, M.Y., Turner, M.R., Evans, A.G. 1995Analysis of the double cleavage drilled compression specimen for interface fracture energy measurements over a range of mode mixitiesActa Materialia433453CrossRefGoogle Scholar
  8. Prades, S., Bonamy, D., Dalmas, D., Bouchaud, E., Guillot, C. 2005Nano-ductile crack propagation in glasses under stress corrosion: spatiotemporal evolution of damage in the vicinity of the crack tipInternational Journal of Solids and Structures42637645MATHCrossRefGoogle Scholar
  9. Wiederhorn, S.M., Dretzke, A., Rödel, J. 2002Crack growth in soda-lime-silicate glass near the static fatigue limitJournal of American Ceramic Society8522872292Google Scholar
  10. Wiederhorn, S.M., Dretzke, A., Rödel, J. 2003Near the static fatigue limit in glassInternational Journal of Fracture12117CrossRefGoogle Scholar
  11. Guin, J.-P., Wiederhorn, S.M. 2003Crack growth threshold in soda lime silicate glass: role of hold-timeJournal of Non-Crystalline Solids3161220CrossRefADSGoogle Scholar
  12. Guin, J.-P., Wiederhorn, S.M. 2004Fracture of silicate glasses: ductile or brittle?Physics Review Letters92215502CrossRefADSGoogle Scholar
  13. Guin, J.-P., Sheldon Wiederhorn, M., Fett, T. 2005Crack-tip structure in soda-lime-silicate glass: experimental observationsJournal of American Ceramic Society88652659CrossRefGoogle Scholar
  14. Wiederhorn, S.M., Bolz, L.H. 1970Stress corrosion and static fatigue of glassJournal of American Ceram. Society53543CrossRefGoogle Scholar
  15. Wiederhorn, S.M. 1967Influence of water vapor on crack propagation in soda-lime glassJournal of American Ceram. Society50407CrossRefGoogle Scholar
  16. Bustamante, C., Keller, D. 1995Scanning force microscopy in biologyPhysics Today483238ADSGoogle Scholar
  17. Doremus, R.H. 1994Glass Science2John Wiley and Sons, Inc.New York31Google Scholar
  18. Swiler, T.P., Simmons, J.H., Wright, A.C. 1995Molecular-dynamics study of brittle-fracture in silica glass and cristobaliteJournal of Non-Crystal Solids18268CrossRefADSGoogle Scholar
  19. Nakano, A., Kalia, R.K., Vasishta, P. 1995Physics Review Letters7531383141CrossRefADSGoogle Scholar
  20. Roundtree, C.L., Kalia, R.K., Lidorikis, E., Nakano, A., Brutzel, L.V., Vashishta, P. 2002Annual Review of Material Research32337Google Scholar
  21. Brutzel, L., Rountree, C.L., Kalia, R.K., Nakano, A., Vashishta, P. 2002Mat. ResSoc. Symp. Proc703117Google Scholar
  22. Lu, Z., Nomura, K-I., Sharma, A., Wang, W., Zhang, C., Nakano, A., Kalia, R., Vashishta, P., Bouchaud, E., Rountree, C. 2005Dynamics of wing cracks and nanoscale damage in glassPhysics Review Letters95135501CrossRefADSGoogle Scholar
  23. Fett, T., Rizzi, G., Munz, D. 2005Engineering Fracture Mechanics72145149CrossRefGoogle Scholar
  24. Célarié, F. (2005). Private communication.Google Scholar
  25. Knott, J.F. (1997). Micromechanisms of fracture and the fracture toughness of engineering alloys, pp. 61–91 in Fracture 1977, Vol. 1, ICF4, Waterloo Canada, June.Google Scholar
  26. Knott J.F. (1989). Effects of microstructure and stress-state on ductile fracture in metallic alloys. pp. 125–138 in Advances in Fracture Research. Proceedings of the seventh International Conference on Fracture (ICF7), Salama, K. et al., Eds., Pergamon Press, Oxford, UK.Google Scholar
  27. Wilsdorf, H.G.F. 1983The ductile fracture of metals: a microstructural viewpointMaterial Science and Engineering59119CrossRefGoogle Scholar
  28. Garrison, W.M.,Jr., Moody, N.R. 1987Ductile fractureJournal of Physical Chemistry Solids4810351074CrossRefADSGoogle Scholar
  29. Knott, J.F. 1980Micromechanisms of fibrous crack extension in engineering alloysMeterial Science14327336Google Scholar
  30. Hull, D. (1999). Fractography, Cambridge University Press, Cambridge, UK, Ch. 8 deals with aspects of ductile fracture.Google Scholar
  31. Xi, X.K., Zhao, D.Q., Pan, M.X., Wang, W.H., Wu, Y., Lewandowski, J.J. 2005Fracture of brittle metallic glasses: brittleness or plasticityPhysical Review Letters94125510CrossRefADSGoogle Scholar
  32. Lewandowski, J.J., Wang, W.H. and Greer, A.L. (2005). Intrinsic plasticity or brittleness of metallic glasses. Philoshopical Magazine Letters, to be published in January.Google Scholar
  33. Doremus, R.H. 1994Glass Science2John Wiley and Sons, Inc.New YorkGoogle Scholar
  34. Doremus, R.H. (1979). Chemical durability of glass, pp. 41–69 in Treatise on materials science and technology, Vol. 17, Glass II, Tomozawa, M. and Doremus, R.H. Eds. Academic Press, New York.Google Scholar
  35. Wondraczek, L., Ciccotti, M., Dittmar, A., Oelgardt, C., Célarié, F., Marlière, C. 2006Real-Time Observation of non-equilibrium liquid condensate confined at tensile crack tips in oxide glassesJournal of American Ceramic Society88746749CrossRefGoogle Scholar
  36. Wiederhorn, S.M. (1967). unpublished results.Google Scholar
  37. Saffman, P.G., Taylor, G. 1958The penetration of a fluid into a porous medium or hele-shaw cell containing a more viscous liquidProceedings of Royal Society A245312321MATHMathSciNetADSGoogle Scholar
  38. Fields, R.J., Ashby, M.F. 1976Finger-like crack growth in solids and liquidsPhilosopical Magazine333348ADSGoogle Scholar
  39. Gupta, P.K., Inniss, D., Kurkjian, C.R., Zhong, Q. 2000Nanoscale roughness of oxide glass surfacesJournal of Non-Crystaline Solids262200206CrossRefADSGoogle Scholar
  40. Poggemann, J.-F., Goβ, A., Heide, G., Rädlein, E., Frischat, G.H. 2001Direct view of the structure of a silica glass fracture surfaceJournal of Non-Cryststal, Solids281221226CrossRefADSGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • J. P. Guin
    • 1
  • S. M. Wiederhorn
    • 1
  1. 1.National Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations