International Journal of Fracture

, Volume 139, Issue 1, pp 27–38 | Cite as

Mode III fracture of a magnetoelectroelastic layer: exact solution and discussion of the crack face electromagnetic boundary conditions



This paper develops a closed-form solution for anti-plane mechanical and in plane electric and magnetic fields in a magnetoelectroelastic layer of finite thickness. Explicit expressions for the stresses, electric fields, and magnetic fields, together with their intensity factors are obtained for the extreme cases for impermeable and permeable cracks. Solutions for some special cases, such as a magnetoelectroelastic layer with infinite thickness, are also obtained. Applicability of the crack face electromagnetic boundary conditions is discussed. It is found that the crack profile is important in obtaining the correct electromagnetic fields and their intensity factors. The stress intensity factor, however, does not depend on the crack face electromagnetic boundary condition assumptions.


Cracks crack face boundary conditions fracture mechanics magnetoelectroelastic materials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chung, M.Y., Ting, T.C.T. 1995The Green function for a piezoelectric piezomagnetic anisotropic elastic medium with an elliptic hole or rigid inclusionPhilosophical Magazine Letters72405410Google Scholar
  2. Hu, K.Q., Li, G.Q. 2005Constant moving crack in a magnetoelectroelastic material under anti-plane shear loadingInternational Journal of Solids And Structures4228232835MathSciNetCrossRefGoogle Scholar
  3. Gao, C.F., Kessler, H., Balke, H. 2003Crack problems in magnetoelectroelastic solids. Part I: Exact solution of a crackInternational Journal of Engineering Science41969981MathSciNetCrossRefGoogle Scholar
  4. Gao, C.F., Noda, N. 2004Thermal-induced interfacial cracking of magnetoelectroelastic materialInternational Journal of Engineering Science4213471360CrossRefGoogle Scholar
  5. Gao, C.F., Tong, P., Zhang, T.Y. 2004Fracture mechanics for a mode III crack in a magnetoelectroelastic solidInternational Journal of Solids and Structures4166136629MATHCrossRefGoogle Scholar
  6. Li, X.F. 2001Closed-form solution for a mode III interface crack between two bonded dissimilar elastic layersInternational Journal of Fracture109L3L8CrossRefGoogle Scholar
  7. Liu, J.X., Liu, X.L., Zhao, Y.B. 2001Green’s functions for anisotropic magnetoelectro-elastic solids with an elliptical cavity or a crackInternational Journal of Engineering Science3914051418CrossRefGoogle Scholar
  8. Tian, W.Y., Gabbert, U. 2005Macrocrack-microcrack interaction problem in magnetoelectro solidsMechanics of Materials37565592CrossRefGoogle Scholar
  9. Tian, W.Y., Gabbert, U. 2005Parallel crack near the interface of magnetoelectroelasticComputational Materials Science32562567CrossRefGoogle Scholar
  10. Wang, B.L., Mai, Y.-W. 2003Crack tip field in piezoelectric/piezomagnetic mediaEuropean Journal of Mechanisms A/Solids22591602MATHCrossRefGoogle Scholar
  11. Wang, B.L., Mai, Y.W. 2004Fracture of piezoelectromagnetic materialsMechanics Research Communications316573MATHCrossRefGoogle Scholar
  12. Wang, B.L. and Mai, Y.W. (2006). Corrigendum to: “Fracture of piezoelectromagnetic materials” (Mechanics Research Communications 31 (2004) 65–73). Mechanics Research Communications 33(2), 280.Google Scholar
  13. Wang, X., Shen, Y.P. 2002The general solution of three-dimensional problems in magnetoelectroelastic mediaInternational Journal of Engineering Science4010691080MathSciNetGoogle Scholar
  14. Yang, F.Q. 1997Exact solution for a finite length crack in a strip under general antiplane loadingInternational Journal of Fracture87L57L64Google Scholar
  15. Zhang, T.Y. 1994Effect of sample width on the energy release rate and electric boundary conditions along crack surfaces in piezoelectric materialsInternational Journal of Fracture66R33R38CrossRefGoogle Scholar
  16. Zhang, T.Y., Tong, P. 1996Fracture mechanics for a mode III crack in a piezoelectric materialInternational Journal of Solids and Structures33343359MATHCrossRefGoogle Scholar
  17. Zhang, T.Y., Qian, C.F., Tong, P. 1998Linear electro-elastic analysis of a cavity or a crack in a piezoelectric materialInternational Journal of Solids and Structures3521212149MATHCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Center for Composite MaterialsHarbin Institute of TechnologyHarbinP.R. China
  2. 2.Center for Advanced Materials Technology (CAMT), School of AerospaceThe University of SydneySydneyAustralia

Personalised recommendations