International Journal of Fracture

, Volume 141, Issue 1–2, pp 177–194 | Cite as

Modelling of nucleation and void growth in dynamic pressure loading, application to spall test on tantalum

  • Christophe Czarnota
  • Sébastien Mercier
  • Alain Molinari
Original Article


Dynamic ductile fracture is a three stages process controlled by nucleation, growth and finally coalescence of voids. In the present work, a theoretical model, dedicated to nucleation and growth of voids during dynamic pressure loading, is developed. Initially, the material is free of voids but has potential sites for nucleation. A void nucleates from an existing site when the cavitation pressure p c is reached. A Weibull probability law is used to describe the distribution of the cavitation pressure among potential nucleation sites. During the initial growth, the effect of material properties is essentially appearing through the magnitude of p c. In the later stages, the matrix softening due to the increase of porosity has to be taken into account. In a first step, the response of a sphere made of dense matrix but containing a unique potential site, is investigated. When the applied loading is a pressure ramp, a closed form solution is derived for the evolution of the void that has nucleated from the existing site. The solution appears to be valid up to a porosity of 0.5. In a second part, the dynamic ductile fracture of a high-purity grade tantalum is simulated using the proposed model. Spall stresses for this tantalum are calculated and are in close agreement with experimental levels measured by Roy (2003, Ph.D. Thesis, Ecole Nationale Supérieure de Mécanique et d’Aéronautique, Université de Poitiers, France). Finally, a parametric study is performed to capture the influence of different parameters (mass density of the material, mean spacing between neighboring sites, distribution of nucleation sites...) on the evolution of damage.


Dynamics Ductile fracture Spall Nucleation and growth Micro-inertia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ball, JM 1982Discontinuous equilibrium solutions and cavitation in nonlinear elasticityPhilos Trans R Soc London Ser A306557611MATHADSGoogle Scholar
  2. Carroll, MM, Holt, AC 1972Static and dynamic pore- collapse relations for ductile porous materialsJ Appl Phys4316261636CrossRefADSGoogle Scholar
  3. Cortes, R 1992The growth of microvoids under intense dynamic loadingInt J Solids Struct2913391350CrossRefGoogle Scholar
  4. Curran, DR, Seaman, L, Shockey, DA 1987Dynamic failure of solidsPhys Rep147253388CrossRefADSGoogle Scholar
  5. Duva, JM 1986A constitutive description of nonlinear materials containing voidsMech Mater5137144CrossRefGoogle Scholar
  6. Eftis, J, Carrasco, C, Osegueda, RA 2003A constitutive-microdamage model to simulate hypervelocity projectile-target impact, material damage and fractureInt J Plast1913211354MATHCrossRefGoogle Scholar
  7. Eftis, J, Nemes, JA 1991Evolution equation for the void volume growth rate in a viscoplastic-damage constitutive modelInt J Plast7275293MATHCrossRefGoogle Scholar
  8. Guo, TF, Cheng, L 2001Thermal and vapor pressure effects on cavitation and void growthJ Mater Sci3658715879CrossRefGoogle Scholar
  9. Gurson, AL 1977Continuum theory of ductile rupture by void nucleation and growth: Part I – Yield criteria and flow rules for porous ductile mediaJ Eng Mater Technol99215Google Scholar
  10. Hill, R 1950The mathematical theory of plasticityOxford University PressOxfordMATHGoogle Scholar
  11. Horgan, CO, Polignone, DA 1995Cavitation in nonlinearly elastic solids: a reviewAppl Mech Rev48471485CrossRefGoogle Scholar
  12. Huang, Y 1991Accurate dilatation rates for spherical voids in triaxial stress fieldsJ Appl Mech5810841086Google Scholar
  13. Huang, Y, Hutchinson, JW, Tvergaard, V 1991Cavitation instabilities in elastic-plastic solidsJ Mech Phys Solids39223241CrossRefADSGoogle Scholar
  14. Johnson, JN 1981Dynamic fracture and spallation in ductile solidsJ Appl Phys5228122825CrossRefADSGoogle Scholar
  15. Johnson, JN, Addessio, FL 1988Tensile plasticity and ductile fractureJ Appl Phys6466996712CrossRefADSGoogle Scholar
  16. Klöcker, H, Montheillet, F 1988Modeling the ductile growth of voids at high strain ratesJ Phys49C3313C3318Google Scholar
  17. Leblond, JB, Perrin, G, Suquet, P 1994Exact results and approximate models for porous viscoplastic solidsInt J Plast10213235MATHCrossRefGoogle Scholar
  18. McClintock, FA 1968A criterion for ductile fracture by the growth of holesJ Appl Mech35363371Google Scholar
  19. Meyers, MA, Aimone, CT 1983Dynamic fracture (spalling) of metalsProg Mater Sci28196CrossRefGoogle Scholar
  20. Molinari, A, Mercier, S 2001Micromechanical modelling of porous materials under dynamic loadingJ Mech Phys Solids4914971516MATHCrossRefADSGoogle Scholar
  21. Molinari, A, Wright, TW 2005A physical model for nucleation and early growth of voids in ductile materials under dynamic loadingJ Mech Phys Solids5314761504CrossRefMATHADSGoogle Scholar
  22. Needleman, A 1972Void growth in an elastic-plastic mediumJ Appl Mech41964970Google Scholar
  23. Needleman A, Tvergaard V, Hutchinson JW (1992) Void growth in plastic solids. In: Argon AS (ed). Topics in Fracture and Fatigue Springer–Verlag, BerlinGoogle Scholar
  24. Olevsky, E, Skorohod, V 1988Some questions of sintering of porous bodiesInt J Plast16137CrossRefGoogle Scholar
  25. Ortiz, M, Molinari, A 1992Effect of strain hardening and rate sensitivity on the dynamic growth of a void in a plastic materialJ Appl Mech1144853Google Scholar
  26. Rice, JR, Tracey, DM 1969On the ductile enlargement of voids in triaxial stress fieldsJ Mech Phys Solids17201217CrossRefADSGoogle Scholar
  27. Roy G (2003) Vers une modélisation approfondie de l’endommagement ductile dynamique. Investigation expérimentale d’une nuance de tantale et développements théoriques. Ph.D. thesis, Ecole Nationale Supérieure de Mécanique et d’Aéronautique, Université de Poitiers, FranceGoogle Scholar
  28. Thomason, TR 1999Ductile spallation fracture and the mechanics of void growth and coalescence under shock-loading conditionsActa Mater4736333646CrossRefGoogle Scholar
  29. Tong, W, Ravichandran, G 1993Dynamic pore collapse in viscoplastic materialsJ Appl Phys7424252435CrossRefADSGoogle Scholar
  30. Tong, W, Ravichandran, G 1995Inertial effects on void growth in porous viscoplastic materialsTrans ASME: J Appl Mech62633639CrossRefGoogle Scholar
  31. Tonks DL, Zurek AK, Thissel WR (2002) Void coalescence models for ductile damage. In: International workshop on new models and hydrocodes for shock wave processes in condensed matter EdinburghGoogle Scholar
  32. Tvergaard, V 1981Influence of voids on shear band instabilities under plain strain conditionsInt J Frac17389407CrossRefGoogle Scholar
  33. Tvergaard, V 1982On localization in ductile materials containing spherical voidsInt J Frac18237252Google Scholar
  34. Tvergaard, V, Huang, Y., Hutchinson, JW 1992Cavitation instabilities in a power hardening elastic-plastic solidEur J Mech Ser A, Solids11215231Google Scholar
  35. Tvergaard, V, Needleman, A 1984Analysis of cup-cone fracture in a round tensile barActa Metall32157169CrossRefGoogle Scholar
  36. Wang, ZP 1997Void-containing nonlinear materials subject to high-rate loadingJ Appl Phys8172137227CrossRefADSGoogle Scholar
  37. Weibull, W 1951A statistical distribution of wide applicabilityJ Appl Mech18293297MATHGoogle Scholar
  38. Wright TW, Ramesh KT, Molinari A (2005) Status of statistical modeling for damage from nucleation and growth of voids. In: 14th APS Topical Conference on Shock Compression of Condensed MatterGoogle Scholar
  39. Wright TW, Schoenfeld SE, Ramesh KT, Wu XY (2004) Progress in computational models for damage from shear bands and voids. In: (Furnish M, Gupta Y, Forbes J) (eds) Shock Compression of Condensed Matter–2003: Proceedings of the Conference of the American Physical Society Topical Group on Shock of Condensed Matter, Part I vol. 706, Portland, Or, pp. 629–632Google Scholar
  40. Wu, XY, Ramesh, KT, Wright, TW 2003The dynamic growth of a single void in a viscoplastic material under transient hydrostatic loadingJ Mech Phys Solids51126MATHCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Christophe Czarnota
    • 1
  • Sébastien Mercier
    • 1
  • Alain Molinari
    • 1
  1. 1.Laboratoire de Physique et Mécanique des Matériaux, UMR CNRS 7554Université Paul Verlaine-MetzMetzFrance

Personalised recommendations