International Journal of Fracture

, Volume 139, Issue 2, pp 213–237 | Cite as

Prestressed fracture specimen for delamination testing of composites

  • András Szekrényes


The prestressed end-notched flexure fracture specimen is developed in the present work, which combines the traditional double-cantilever beam and the end-notched flexure specimens in a very simple way. The most important features of the new beam-like specimen are that it is able to provide any combination of the modes I and II strain energy release rates and it may be performed by using a simple three-point bending fixture. The mode-I part of the strain energy release rate is fixed by inserting a steel roller, which causes a fixed crack opening displacement. The mode-II part of the energy release rate is provided by the external load. A simple closed-form solution using beam theory is developed for the energy release rates of the new configuration. The applicability and the limitations of the novel configuration are demonstrated using unidirectional glass/polyester composite specimens. If only propagation onset is involved then the prestressed end-notched flexure specimen can be used to obtain the fracture criterion of transparent composite materials in a very simple way.


Beam theory double-cantilever beam end-notched flexure interlaminar fracture three-point bending variable mode-mixity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arcan, M., Hashin, Z., Voloshin, A. 1978A method to produce plane-stress states with applications to fiber-reinforced materialsExp. Mech.18141146CrossRefGoogle Scholar
  2. Asp, L.E. 1998The effects of moisture and temperature on the interlaminar delamination toughness of a carbon/epoxy compositeComposit. Sci. Technol.58967977CrossRefGoogle Scholar
  3. ASTM D6671 – 01. (2001). Standard test method for mixed mode I-mode II interlaminar fracture toughness of unidirectional fibre reinforced polymer matrix composites, Annual Book of ASTM Standards, Vol. 15.03, 100 Barr Harbor Drive, West Conshohocken, PA 19428, USA.Google Scholar
  4. Bradley W.L., Cohen R.N. (1985). Matrix deformation and fracture in graphite-reinforced epoxies. In Delamination and Debonding of Materials (Edited by Johnson S.W.) American Society for Testing and Materials, Philadelphia, ASTM STP 876, 389–410.Google Scholar
  5. Carlsson, L.A., Gillespie, J.W., Pipes, R.B. 1986On the analysis and design of the end notched flexure (ENF) specimen for mode II testingJ. Composit. Mater.20594604Google Scholar
  6. Chen, J.H., Sernow, R., Schulz, G., Hinrichsen, G. 1999A modification of the mixed-mode bending test apparatusComposites Part A: Appl. Sci. Manufact.30871877CrossRefGoogle Scholar
  7. Chen, L., Sankar B.V. and Ifju P.G. (2003). Mixed-Mode Fracture Toughness Tests for Stitched Composite Laminates. AIAA Paper 2003–1874, In Proceedings of the 44th AIAA Structures, Structural Dynamics and Materials Conference, Norfolk, Virginia, April 7–10, 2003, 10 p.Google Scholar
  8. Crews, Jr J.H. and Reeder, J.R. (1988). A mixed-mode bending apparatus for delamination testing. NASA Technical Memorandum 100662, August, 1–37.Google Scholar
  9. Davidson, B.D., Sundararaman, V. 1996A single leg bending test for interfacial fracture toughness determinationInt. J. Fracture.78193210CrossRefGoogle Scholar
  10. Davies, P., Ducept, F., Brunner, A.J., Blackman, B.R.K. and Morais, de A.B. (1996). Development of a standard mode II shear fracture test procedure. In: Proceedings of the 7th European Conference on Composite Materials (ECCM-7) Vol. 2 , London, May, pp 9–15.Google Scholar
  11. Davies, P., Casari, P., Carlsson, L.A. 2005Influence of fiber volume fraction on the interlaminar fracture toughness of glass/epoxy using the 4ENF specimenComposit. Sci. Technol.65295300CrossRefGoogle Scholar
  12. Ducept, F., Davies, P., Gamby, D. 1997An experimental study to validate tests used to determine mixed mode failure criteria of glass/epoxy compositesComposites Part A: Appl. Sci. Manufact.28A719729CrossRefGoogle Scholar
  13. Ducept, F., Gamby, D., Davies, P. 1999A mixed-mode failure criterion derived from tests of symmetric and asymmetric specimensComposit. Sci. Technol.59609619CrossRefGoogle Scholar
  14. Ducept, F., Davies, P., Gamby, D. 2000Mixed mode failure criteria for a glass/epoxy composite and an adhesively bonded composite/composite jointInt. J. Adhesion and Adhesives.20233244CrossRefGoogle Scholar
  15. Edde, F.C., Verreman, Y. 1995Nominally constant strain energy release rate specimen for the study of mode II fracture and fatigue in adhesively bonded jointsInt. J. Adhesion and Adhesives.152932CrossRefGoogle Scholar
  16. European Structural Integrity Society (ESIS). (2000). Determination of the mixed-mode I/II delamination resistance of unidirectional fibre-reinforced polymer laminates using the asymmetric double cantilever beam specimen (ADCB). Polymers and Composites Task Group, version 00–05–03.Google Scholar
  17. Hashemi, S., Kinloch, J. and Williams, J.G. (1987). Interlaminar fracture of composite materials. In Proceedings of the 6th ICCM and ECCM Conference, Vol. 3, Elsevier Applied Science, London, pp. 3.254–3.264.Google Scholar
  18. Hashemi, S., Kinloch, J., Williams, J.G. 1990aThe effects of geometry, rate and temperature on mode I, mode II and mixed-mode I/II interlaminar fracture toughness of carbon-fibre/poly (ether-ether ketone) compositesJ. Composit. Mater.24918956Google Scholar
  19. Hashemi, S., Kinloch, J., Williams, J.G. 1990bMechanics and mechanisms of delamination in a poly(ether sulphone)-fibre compositeComposit. Sci. Technol.37429462CrossRefGoogle Scholar
  20. Ifju, P.G., Chen, L.-S. and Sankar, B.V. (2002). Mixed-mode fracture toughness for stitched composites. SEM Annual Conference, Milwaukee, WI 2002, paper number 173.Google Scholar
  21. Kim, B.W., Mayer, A.H. 2003Influence of fiber direction and mixed-mode ratio on delamination fracture toughness of carbon/epoxy laminatesComposit. Sci. Technol.63695713CrossRefGoogle Scholar
  22. Korjakin, A., Rikards, R., Buchholz, F.-G., Wang, H., Bledzki, A.K., Kessler, A. 1998Comparative study of interlaminar fracture toughness of GFRP with different fiber surface treatmentsPolymer Composites.19793806CrossRefGoogle Scholar
  23. Lai, Y.-H., Rakestraw, M.D., Dillard, D.A. 1996The cracked lap shear specimen revisited – a closed form solutionInt. J. Solids and Struct.3317251743MATHCrossRefGoogle Scholar
  24. Morais de, A.B., Moura de, M.F., Marques, A.T., Castro de, P.T. 2002Mode-I interlaminar fracture of carbon/epoxy cross-ply compositesComposit. Sci. Technol.62679686CrossRefGoogle Scholar
  25. Olsson, R. 1992A simplified improved beam analysis of the DCB specimenComposit. Sci. Technol.43329338CrossRefGoogle Scholar
  26. Ozdil, F., Carlsson, L.A., Davies, P. 1998Beam analysis of angle-ply laminate end-notched flexure specimensComposit. Sci. Technol.5819291938CrossRefGoogle Scholar
  27. Ozdil, F., Carlsson, L.A. 1999aBeam analysis of angle-ply laminate DCB specimensComposit. Sci. Technol.59305315CrossRefGoogle Scholar
  28. Ozdil, F., Carlsson, L.A. 1999bBeam analysis of angle-ply laminate mixed-mode bending specimensComposit. Sci. Technol.59937945CrossRefGoogle Scholar
  29. Qiao, P., Wang, J., Davalos, J.F. 2003bAnalysis of tapered ENF specimen and characterization of bonded interface fracture under mode-II loadingInt. J. Solids Struct.4018651884CrossRefGoogle Scholar
  30. Raju, I.S., Crews, J.H.,Jr, Aminpour, M.A. 1988Convergence and strain energy release rate components for edge-delaminated composite laminatesEng. Fracture Mech.30383396CrossRefGoogle Scholar
  31. Reeder, J.R., Crews, J.H.,Jr 1990Mixed-mode bending method for delamination testingAIAA J.2812701276Google Scholar
  32. Reeder, J.R., Crews, J.H.,Jr 1991Nonlinear analysis and redesign of the mixed-mode bending delamination testNASA Tech. Memorandum.102777149januaryGoogle Scholar
  33. Reeder, J.R. 1992An evaluation of mixed-mode delamination failure criterionNASA Technical Memorandum.104210149februaryGoogle Scholar
  34. Reeder J.R. (2000). Refinements to the mixed-mode bending test for delamination toughness. NASA-2000-ASC15ATC. 1–8.Google Scholar
  35. Rhee K.Y., Chi C.H. (2001). Determination of fracture toughness, G C of Graphite/epoxy composites from a cracked lap shear (CLS) specimen. J. Composit. Materi 35, 77–93.Google Scholar
  36. Rikards, R., Buchholz, F.G., Wang, H., Bledzki, A.K., Korjakin, A., Richard, H.-A. 1998Investigation of mixed mode I/II interlaminar fracture toughness of laminated composites by using a CTS type specimenEng. Fracture Mech.61325342CrossRefGoogle Scholar
  37. Schön, J., Nyman, T., Blom, A., Ansell, H. 2000Numerical and experimental investigation of a composite ENF-specimenEng. Fracture Mech.65405433CrossRefGoogle Scholar
  38. Schuecker, C. and Davidson, B.D. (2000). Evaluation of the accuracy of the four-point bend end-notched flexure test for mode II delamination toughness determination. Composit. Sci. Technol. 60, 2137–2146.Google Scholar
  39. Sørensen, B.F., Jørgensen, K., Jacobsen, T.K. and Østergaard, R.C. (2004). A general mixed-mode fracture specimen: The DCB specimen loaded with uneven bending moments. Print. Pitney Bowes Management Services A/S - Risø-R-1394(EN), 1–35.Google Scholar
  40. Sundararaman, V., Davidson, B.D. 1997An unsymmetric double cantilever beam test for interfacial fracture toughness determinationInt. J. Solids and Struct.34799817MATHCrossRefGoogle Scholar
  41. Sundararaman, V., Davidson, B.D. 1998An unsymmetric end-notched flexure test for interfacial fracture toughness determinationEng. Fracture Mech.60361377CrossRefGoogle Scholar
  42. Szekrényes, A., Uj, J. 2004Beam and finite element analysis of quasi-unidirectional SLB and ELS specimensComposit. Sci. Technol.6423932406CrossRefGoogle Scholar
  43. Szekrényes A. (2005). Delamination of composite specimens. PhD Thesis, Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Applied Mechanics, Budapest, PhD-261/2004.Google Scholar
  44. Szekrényes, A., Uj, J. 2005Mode-II fracture in E-glass/polyester compositeJ. Composit. Materi.3917471768CrossRefGoogle Scholar
  45. Szekrényes, A., Uj, J. 2006aComparison of some improved solutions for mixed-mode composite delamination couponsComposit. Struct.72321329CrossRefGoogle Scholar
  46. Szekrényes, A. and Uj, J. (2006b). Over-leg bending test for mixed-mode I/II interlaminar fracture in composite laminates. Int. J. Damage Mech. (accepted for publication).Google Scholar
  47. Tracy, G.D., Feraboli, P., Kedward, K.T. 2003A new mixed mode test for carbon epoxy composite systemsComposites Part A: Appl. Sci. Manufact.3411251131CrossRefGoogle Scholar
  48. Wang, J., Qiao, P. 2003Fracture toughness of wood-wood and wood-FRP bonded interfaces under mode-II loadingJ. Composit. Materi.37875898CrossRefGoogle Scholar
  49. Wang, J, Qiao, P. 2004Novel beam analysis of the end notched flexure specimen for mode-II fractureEng. Fracture Mech.71219231CrossRefGoogle Scholar
  50. Wang, H., Vu-Khanh, T. 1996Use of end-loaded-split (ELS) test to study stable fracture behaviour of composites under mode-II loadingComposit. Struct.367179CrossRefGoogle Scholar
  51. Wang, W.-X., Takao, Y. and Nakata, M. (2003). Effects of friction on the measurement of the mode II interlaminar fracture toughness of composite laminates. In: Proceedings of the 14th International Conference on Composite Materials (CD-ROM), Manuscript No.:1429, July 14–18, San Diego, California, USA.Google Scholar
  52. Wang, Y., Williams, J.G. 1992Corrections for mode II fracture toughness specimens of composite materialsComposit. Sci. Technol.43251256CrossRefGoogle Scholar
  53. Williams, J.G. 1988On the calculation of energy release rates for cracked laminatesInt. J. Fracture.36101119CrossRefADSGoogle Scholar
  54. Williams, J.G. 1989End corrections for orthotropic DCB specimensComposit. Sci. Technol.35367376CrossRefGoogle Scholar
  55. Yoon, S.H., Hong, C.S. 1990aModified end notched flexure specimen for mixed mode interlaminar fracture in laminated compositesInt. J. Fracture.43R3R9CrossRefGoogle Scholar
  56. Yoon, S.H., Hong, C.S. 1990bInterlaminar fracture toughness of graphite/epoxy composite under mixed-mode deformationsExp. Mech.30234239CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of Applied MechanicsBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations