International Journal of Fracture

, Volume 134, Issue 1, pp 23–39 | Cite as

Finite element simulation of fracture behaviour for aged duplex stainless steels



In this paper, the local approach model developed by Gurson–Tvergaard has been applied to simulate both the crack initiation and the crack growth of aged duplex stainless steel. The parameters of the Gurson–Tvergaard model have been obtained, from axisymmetric notched specimen testing, as a function of the ageing time at 400°C, the ferrite content of the steel and the stress triaxiality. After that, to simulate the fracture of CT specimens, finite element (FE) calculations have been effected in order to obtain the stress triaxiality value at each point on the process zone ahead of the crack tip of these specimens. The adequate damage parameters concerning triaxiality are determined from the ones obtained at the notched specimens, in order to be used in FE simulations of fracture behaviour. With them, the corresponding J−Δa curves have been simulated as representative of both the crack initiation and crack propagation stages, and compared with experimental results in order to validate the methodology proposed.


Crack growth simulation duplex stainless steel Gurson–Tvergaard model thermal ageing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alegre, J.M. 1999Estudio mediante técnicas de aproximación local de la fractura de aceros asutenoferríticos envejecidos. PhD ThesisUniversity of CantabriaSantander, SpainGoogle Scholar
  2. Alegre, J.M., Gutierrez-Solana, F. 2004A Gurson-Tvergaard based model to simulate the fracture of aged duplex stainless steelsFatigue and Fracture of Engineering Materials and Structures2711711182CrossRefGoogle Scholar
  3. Alegre J.M., Pérez J., Gutiérrez-Solana F., Sánchez L. (2000). The Application of the Gurson-Tvergaard. model in the aging embrittlement of austeno-ferritic stainless steels. Proceedings of 13th European Conference on Fracture,. San Sebastian, Spain.Google Scholar
  4. Chopra O.K. (1991). Estimation of Fracture Toughness of Cast Stainless Steels During Thermal Ageing in LWR Systems NUREG/CR–4513, Argonne National Laboratory.Google Scholar
  5. Chu, C., Needleman, A. 1980Void nucleation effects in biaxially stretched sheetsJournal of Engineering Materials and Technology102249256Google Scholar
  6. Chung, H.M. 1992Aging and life prediction of cast duplex stainless steel componentsInternational Journal of Pressure Vessels and Piping50179213CrossRefGoogle Scholar
  7. Devillers-Guerville L. (1998). Rupture d’aciers inoxydables austéno-ferritiques moulés fragilisés par vieillissement á 350–400°C: aspects microstructuraux-simulation numériques de la dispersion et des effets d’échelle, PhD These. Ecole National Supérieure des Mines de Paris, France.Google Scholar
  8. Devillers-Guerville, L., Besson, J., Pineau, A. 1997Notch fracture toughness of a cast duplex stainless steel: modelling of experimental scatter and size effectJournal of Nuclear Engineering and Design168211236CrossRefGoogle Scholar
  9. Dos Santos, F.F., Ruggieri, C. 2003Micromechanics modelling of ductile fracture in tensile specimens using computational cellsFatigue and Fracture of Engineering Materials and Structures26173181CrossRefGoogle Scholar
  10. *ESIS P1–92 (1992). Recommendations for determining the fracture resistance of ductile materials. European Structural Integrity Society.Google Scholar
  11. Giovanola, J.H., Kirkpatrick, S.W. 1998Using the local approach to evaluate scaling effects in ductile fractureInternational Journal of Fracture92101116CrossRefGoogle Scholar
  12. Gunn, R.N. 1997Duplex Stainless Steels:. Microstructure, Properties and ApplicationsAbington PublishingUKGoogle Scholar
  13. Gurson, A.L. 1977Continuum theory of ductile rupture by void nucleation and growth: Part I-yield criteria and flow rules for porous ductile mediaJournal of Engineering Materials Technology99215Google Scholar
  14. Joly P. (1992). Etude de la Rupture d’aciers Inoxydables Austeno-Ferritiques Moules, Fragilises Par Vieillissement a 400°C. PhD Thesis. Ecole National Supérieure des Mines de Paris, France.Google Scholar
  15. Needleman, A., Tvergaard, V. 1984An analysis of ductile rupture in notched barsJournal of Mechanical Physics Solids32461490CrossRefGoogle Scholar
  16. Needleman, A., Tvergaard, V. 1994Mesh effects in the analysis of dynamic ductile crack growthEngineering Fracture Mechanics477591CrossRefGoogle Scholar
  17. Pineau A., Joly P. (1991). Local versus global approaches to elastic-plastic fracture mechanics. Application to ferritic steels and a cast duplex stainless steel. Proceedings of the European Symposium on Elastic-Plastic Fracture Mechanics: Defect Assessment in Components–Fundamentals and Applications. Mechanical Engineering Publications, London, 381–414.Google Scholar
  18. Rousselier, G. 1980Three dimensional constitutive relations and ductile fractureNemat-Nasser, S. eds. Finite Deformation Constitutive Relations Including Ductile Fracture DamageNorth-Holland Publishing CompanyNew York331355Google Scholar
  19. Sánchez, L. 1996Fragilización por Envejecimiento a Baja Temperatura en Aceros Inoxidables Austenoferríticos PhD thesisUniversity of CantabriaSantander SpainGoogle Scholar
  20. Sánchez L., Gutiérrez-Solana, F., González, J (1996). Evolution of JR–TR curves with low temperatures. ageing of duplex stainless steels. In: Mechanisms and Mechanics of Damage and Failure ESIS. Proceedings of the 11th European Conference on Fracture, Poitiers-Futuroscope, France, 571–576.Google Scholar
  21. Tvergaard, V. 1990Material failure by void growth to coalescence. Advances in Applied Mechanics. Vol. 27Academic PressNew York83151Google Scholar
  22. Tvergaard, V., Needleman, A. 1984Analysis of the cup-cone fracture in a round tensile barActa Metallurgica et Materalia32157169CrossRefGoogle Scholar
  23. Zebulon,  2000Reference ManualEcole National Supérieure des Mines de ParisFrance7.0.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Division of Mechanics of Continuum MediaUniversity of BurgosSpain
  2. 2.Laboratory of Materials Science and EngineeringUniversity of CantabriaSpain

Personalised recommendations