International Journal of Fracture

, Volume 133, Issue 2, pp L13–L17 | Cite as

On Using The Kane-Mindlin Theory in The Analysis Of Cracks in Plates



This note calls attention to an old error in the theories for extensional motions of plates, which still persists today; in particular, it often appears in analyses of cracks in plates.


Mechanical Engineer Civil Engineer Extensional Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kane, T. R., Mindlin, R. D. 1956High-frequency extensional vibrations of platesASME J. Appl. Mech23277283Google Scholar
  2. 2.
    Mindlin, R. D., Medick, M. A. 1959Extensional vibrations of elastic platesASME J. Appl. Mech26561569Google Scholar
  3. 3.
    Cuschieri, J. M. 1992Coupling of in-plane and out-of-plane waves in thick flat plate structures subjected to a transverse loadJ. Acoust. Soc. Am912418Google Scholar
  4. 4.
    McKeon, J. C. P., Hinders, M. K. 1999Lamb wave scattering from a through holeJ. of Sound and Vibration224843862Google Scholar
  5. 5.
    Sih, G. C. and Chen, E. P. (1977). Dynamic analysis of cracked plates in bending and extension. In Mechanics of Fracture, Vol. 3, G. C. Sih ed., Noordhoff, Leydon, pp. 231-272.Google Scholar
  6. 6.
    Yang, W, Freund, B. L. 1985Transverse shear effects for trough-cracks in an elastic plateInt. J. Solids Structures21977994Google Scholar
  7. 7.
    Jin, Z. H., Huwang, K. C. 1989An analysis of three-dimensional effects near the tip of a crack in an elastic plateActa Solida Mechanica Sinica2387401Google Scholar
  8. 8.
    Jin, Z. H., Noda, N. 1994A quasi-three-dimensional crack problem of an elastic plate subjected to in-plane shear loadingEngineering Fracture Mechanics49773779Google Scholar
  9. 9.
    Jin, Z. H., Batra, R. C. 1997Dynamic fracture of a kane-mindlin plateTheoretical and Applied Fracture Mechs26199210Google Scholar
  10. 10.
    Jin, Z. H., Batra, R. C. 1997A crack at the interface between a Kane-Mindlin plate and a rigid substrateEngineering Fracture Mechanics57343354Google Scholar
  11. 11.
    Li, Z. H., Guo, W. L. 2001Three-dimensional elastic stress fields ahead of blunt V-notches in finite thickness platesInt. J. Fracture1075371Google Scholar
  12. 12.
    Kotousov, A., Wang, C. H. 2002Three-dimensional stress constraint in an elastic plate with a notchInt. J. Solids Structures3943114326Google Scholar
  13. 13.
    Kotousov, A., Wang, C. H. 2002Fundamental solutions for the generalized plane stress theoryInt. J. Engng Sci4017751790Google Scholar
  14. 14.
    Kotousov, A. 2003CTOD for the through-the-thickness crack in a plate of arbitrary thicknessInt. J. Fracture119L99L104Google Scholar
  15. 15.
    Kotousov, A., Tan, P. J. 2004Effect of the plate thickness on the out-of-plane displacement field of a cracked elastic plate loaded in mode IInt. J. of Fracture127L97L103Google Scholar
  16. 16.
    Lee, P. C. Y., Nikodem, Z. 1972An approximate theory for high-frequency vibrations of elastic platesInt. J. Solids Structures8581612Google Scholar
  17. 17.
    Mindlin, R. D. and Hermann, G. (1951). A one-dimensional theory of compressional waves in an elastic rod. In: Proceedings of the first U.S. National Congress of Applied Mechanics-1951, 187-191.Google Scholar
  18. 18.
    Mindlin, R. D., McNiven, H. D. 1960Axially symmetric waves in elastic rodsASME Journal of Applied Mechanics27145151Google Scholar
  19. 19.
    Truesdell C. (eds) (1972). Mechanics of Solids II. In: S. Flugge’s Handbuch der Physik, Vol. VIa/2 Srpinger-Verlag, Berlin.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Engineering MechanicsUniversity of NebraskaLincolnUSA
  2. 2.Institute of Mechanics and Sensor Technology, School of Civil Engineering and ArchitectureCentral South UniversityChangshaChina

Personalised recommendations