Advertisement

International Journal of Fracture

, Volume 133, Issue 3, pp 223–246 | Cite as

Extended structural criterion for numerical simulation of crack propagation and coalescence under compressive loads

  • A. Dobroskok
  • A. Ghassemi
  • A. Linkov
Article

Abstract

An extension of the Neuber-Novozhilov structural fracture propagation criterion is presented for mode I (tensile) and mode II (shear) propagation under compressive loads. In addition to allowing numerical simulation of crack growth, the criterion can be used to model change of propagation mode, crack branching, and coalescence. The criterion can be applied effectively when the SIF is calculated accurately (at least three significant digits). A numerical method is suggested for this purpose that consists of complementing the complex variable hypersingular boundary element method (CVH-BEM) with special procedures for automatically tracing crack propagation and coalescence. The CVH-BEM code with the structural criterion has been used to investigate crack propagation in compression for both small and non-small fracture process zone (FPZ). The results of numerical experiments are in agreement with the analytical conclusions available for the case of small FPZ that indicates the possibility of three distinct patterns of crack propagation under external compressive loads. These are: (i) smooth curvilinear tensile (wing) cracks, (ii) stair-step propagation pattern with changing modes, and (iii) in plane shear propagation. The numerical study also indicates that when the critical size of the FPZ is large enough, the non-singular terms in the expansion of the stress functions strongly influence the crack trajectories. Specifically, this occurs when the size of the FPZ approaches a quarter of the half-length of the initial crack. Calculations for a closed initial crack in a half-space under compression illustrate the general features of crack propagation. Although the dominant direction of crack growth is that of the applied compressive stress, the pattern of propagation strongly depends on the particular geometry, critical size of the FPZ, and the ratio of shear-to-tensile microscopic strength.

Keywords

Compressive Stress Boundary Element Method Compressive Load Critical Size Plane Shear 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bobet, A. (2001). Numerical simulation of initiation of tensile and shear cracks. Rock Mechanics in the National Interest. Proceedings of the 38th US Rock Mechanics Symposium. Swets & Zeitlinger Lisse, Tinucci and Heasley eds., 731–738.Google Scholar
  2. Bobet, A., Einstein, H.H. 1998aFracture coalescence in rock-type materials under uniaxial and biaxial compressionInt. J. Rock Mech. Min. Sci35863888CrossRefGoogle Scholar
  3. Bobet, A., Einstein, H.H. 1998bNumerical modeling of fracture coalescence in a model rock materialInt. J. Fract92221252CrossRefGoogle Scholar
  4. De Bremaecker, J.-C. and Ferris, M.C. (2005). Numerical models of shear fracture propagation. Eng. Fracture Mech., 2004 (in press).Google Scholar
  5. De Bremaecker, J-C., Ferris, M.A., Ralph, D. 2000Compressional fractures considered as contact problems and mixed complementarity problemsEng. Fract. Mech66287303CrossRefGoogle Scholar
  6. Cherepanov, G.P. 1996Propagation of cracks in compressed bodiesJ. Appl. Math. Mech. (English translation of Prikladnaia Matematika i Mekhanika)3096109Google Scholar
  7. Cotterell, B., Rice, J.R. 1980Slightly curved or kinked cracksInt. J. Fract16155168CrossRefGoogle Scholar
  8. Dobroskok, A.A. (2003a). Numerical Simulation of Constitutive Equations for a Medium with Cracks and Contact Interaction. Ph. D. Thesis. Institute for Problems of Mechanical Engineering of Russian Academy of Sciences, Saint-Petersburg, (in Russian).Google Scholar
  9. Dobroskok, A.A. (2003b). Crack growth near a free surface. Mathematical Modeling in Solid Mechanics. Boundary & Finite Elements Methods. Proceedings of the 20th International Conference. St-Petersburg, Postnov V. A. ed., 2, 184–187.Google Scholar
  10. Dobroskok, A.A., Linkov, A.M., Myer, L. and Roegiers, J-C. (2001). On a new approach in micromechanics of solids and rocks. Mechanics in the National Interest. Proceedings of the 38th US Rock Mechanics Symposium. Swets & Zeitlinger Lisse. Tinucci and Heasley, eds., 1185–1190.Google Scholar
  11. Dyskin, A.V. 1997Crack growth criteria incorporating non-singular stresses: size effect in apparent fracture toughnessInt. J. Fract83191206CrossRefGoogle Scholar
  12. Dyskin, A.V. 1998Stress fluctuation mechanism of mesocrack growth, dilatancy and failure of heterogeneous materials in uniaxial compressionHERON43137158Google Scholar
  13. Dyskin, A.V., Germanovich, L.N., Ustinov, K.B. 1999A 3-D model of wing crack growth and interactionEng. Fract. Mech6381110CrossRefGoogle Scholar
  14. Germanovich, L.N., Ring, L.M. and Carter B.J. et al. (1995). Simulation of crack growth and interaction in compression. Proceedings 8th Congress on Rock Mechanics. Balkema, Rotterdam, Fujii T. ed., 1, 219–226.Google Scholar
  15. Griffith, A.A. (1924). The theory of rupture. Proceedings 1st International Congress Applied Mechanics, Delft, 1924, 55–63.Google Scholar
  16. Horii, H., Nemat-Nasser, S. 1985Compression-induced microcrack growth in brittle solids: axial splitting and shear failureJ. Geophys. Res9031053125Google Scholar
  17. Ingraffea, A.R., Heuze, F.E. 1980Finite element models for rock fracture mechanicsInt. J. Numer. Anal. Methods Geomech42543Google Scholar
  18. Isaksson, P., Stale, P. 2002Prediction of shear crack growth direction under compressive loading and plane strain conditionsInt. J. Fract113175194CrossRefGoogle Scholar
  19. Isupov, I.P., Mikhailov, S.E. 1998A comparative analysis of several nonlocal fracture criteriaArch. Appl. Mech68597612Google Scholar
  20. Kachanov, M.L. 1993Elastic solids with many cracks and related problemsAdv. Appl. Mech30259445Google Scholar
  21. Kemeny, J.M., Cook, N.G.W. 1991Micromechanics of Deformation in RocksShah, S.P. eds. Toughness Mechanics in Quasi-Brittle MaterialsKluwer Academic Publishersthe Netherlands155188Google Scholar
  22. Koshelev, V.F., Ghassemi, A. 2003Numerical modeling of stress distribution and crack trajectory near a fault or a natural fractureCulligan, P.J.Einstein, H.H.Whittle, A.J. eds. Soil and Rock America 2003; 39th US Rock Mechanics SymposiumCambridgeMA931936Google Scholar
  23. Linkov, A.M. (1994). Dynamic Phenomena in Mines and the Problem of Stability. Int. Soc. Rock Mech., Lisboa, Cedex, Portugal.Google Scholar
  24. Linkov, A.M. 2002Boundary Integral Equations in Elasticity TheoryKluwer Academic PublishersDordrecht-Boston-LondonGoogle Scholar
  25. Melin, S. 1986When does a crack grow under mode II conditions?Int. J. Fract30103114Google Scholar
  26. Mikhailov, S.E. (1995). A functional approach to non-local strength conditions and fracture criteria. – I. Body and point fracture. II. Discrete fracture. Eng. Fract. Mech., 52, 731–743, 745–754.Google Scholar
  27. Mogilevskaya, S.G., Rothenburg, L., Dusseault, M.B. 2000Growth of pressure-induced fractures in the vicinity of a wellboreInt. J. Fract104L25L30CrossRefGoogle Scholar
  28. Morozov, N.F., Petrov, Y.V. 1996On the macroscopic parameters of brittle fractureArch. Mech. Int. J48825833Google Scholar
  29. Nemat-Nasser, S., Horii, H. 1982Compression-induced nonplanar crack extension with application to splitting, exfoliation and rockburstJ. Geophys. Res8768056821Google Scholar
  30. Neuber, H. 1946Theory of Notch StressesJ.W. EdwardsAnn Arbor, MichiganGoogle Scholar
  31. Novozhilov, V.V. 1969On a necessary and sufficient criterion for brittle strengthJ. Appl Math. Mech. (English translation of Prikladnaia Matematika i Mekhanika)33201210Google Scholar
  32. Petit, J.-P., Barquins, M. 1988Can natural faults propagate under mode II conditions?Tectonics712431256Google Scholar
  33. Rao, Q., Sun, Z., Stephansson, O., Li, C., Stillborg, B. 2003Shear fracture (Mode II) of brittle rockRock Mech. Mining Sci40355375CrossRefGoogle Scholar
  34. Reyes, O., Einstein, H.H. 1991Failure mechanism of fractured rock – a fracture coalescence modelProceedings of the 7th International Congress of Rock Mechanics1333340Google Scholar
  35. Severin, A. 1994Brittle fracture criterion for structure with sharp notchesEng. Fract. Mech47673681CrossRefGoogle Scholar
  36. Severin, A., Mroz, Z. 1995A non-local stress failure condition for structural elements under multiaxial loadingEng. Fract. Mech51955973CrossRefGoogle Scholar
  37. Shen, B., Stephanson, O., Einstein, H.H., Ghahreman, B. 1995Coalescence of fractures under shear stress in experimentsJ. Geophys. Res10059755990CrossRefGoogle Scholar
  38. Tang, C.A., Lin, P., Wong, R.H.C., Chau, K.T. 2001Analysis of crack coalescence in rock-like materials containing three flaws – Part II: numerical approachInt. J. Rock Mech. Min. Sci38925939CrossRefGoogle Scholar
  39. Wong, R.H.C., Chau, K.T. 1998Crack coalescence in rock-like material containing two cracksInt. J. Rock Mech. Min. Sci35147164CrossRefGoogle Scholar
  40. Wong, R.H.C., Chau, K.T., Tang, C.A., Lin, P. 2001Analysis of crack coalescence in rock-like materials containing three flaws – Part I: experimental approachInt. J. Rock Mech. Min. Sci38909924CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Geology and Geological EngineeringUniversity of North DakotaGrand ForksUSA

Personalised recommendations