International Journal of Fracture

, Volume 135, Issue 1–4, pp 73–93 | Cite as

Crack Tip Shielding or Anti-shielding due to Smooth and Discontinuous Material Inhomogeneities

  • N. K. Simha
  • F. D. Fischer
  • O. Kolednik
  • J. Predan
  • G. X. Shan


This paper describes a theoretical model and related computational methods for examining the influence of inhomogeneous material properties on the crack driving force in elastic and elastic-plastic materials. Following the configurational forces approach, the crack tip shielding or anti-shielding due to smooth (e.g. graded layer) and discontinuous (e.g. bimaterial interface) distributions in material properties are derived. Computational post-processing methods are described to evaluate these inhomogeneity effects. The utility of the theoretical model and computational methods is demonstrated by examining a bimaterial interface perpendicular to a crack in elastic and elastic-plastic compact tension specimens.


Composite material energy release rate finite element method fracture toughness layered material 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeyaratne, R., Knowles, J.K. 1990On the driving traction acting on a surface of strain discontinuity in a continuum.J. Mech. Phys. Solids38345360MathSciNetMATHADSGoogle Scholar
  2. Bogy, D.B. 1968Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loadingASME J. App. Mech.35460466MATHGoogle Scholar
  3. Bogy, D.B. 1971Two edge-bonded elastic wedges of different materials and wedge angles under surface tractionsASME Journal of Applied Mechanics38377386Google Scholar
  4. Braun, M. 1997Configurational forces induced by finite-element discretizationProc. Estonian Acad. Sci. Phys. Math.462431MATHMathSciNetGoogle Scholar
  5. Denzer, R., Barth, F.J., Steinmann, P. 2003Studies in elastic fracture mechanics based on the material force methodInt. J. Numer. Meth. Eng.5818171835CrossRefMATHGoogle Scholar
  6. Dundurs, J. 1969Edge-bonded dissimilar orthogonal elastic wedgesASME Journal of Applied Mechanics36650652Google Scholar
  7. Ericksen, J.L. 1977Special topics in elastostaticsYih, C.-S. eds. Advances in Applied MechanicsAcademic PressNew York189244Google Scholar
  8. Eshelby, J.D.,  et al. 1970Energy relations and the energy-momentum tensor in continuum mechanicsKanninen, M. eds. Inelastic Behavior of SolidsMcGraw HillNew York77115Google Scholar
  9. Gurtin, M.E. 1995The nature of configurational forcesArch. Rational Mech. Anal.13167100CrossRefMATHMathSciNetADSGoogle Scholar
  10. Gurtin, M.E. 2000Configurational Forces as Basic Concepts of Continuum PhysicsSpringerNew YorkGoogle Scholar
  11. Gurtin, M.E., Podio-Guidugli, P. 1996Configurational forces and the basic laws for crack propagationJournal of the Mechanics Physics of Solids44905927MathSciNetMATHADSGoogle Scholar
  12. Kienzler, R., Herrmann, G. 2000Mechanics in Material SpaceSpringerBerlinMATHGoogle Scholar
  13. Kikuchi, M., Miyamoto, H. 1984Application of the J-integral concept to microscopic fracture mechanicsCarlsson, J.Ohlson, N.G. eds. Mechanical Behavior of Materials IV, Proceedings of the Fourth International ConferencePergamonOxford, UK10771083Google Scholar
  14. Kolednik, O. 2000The yield stress gradient effect in inhomogeneous materialsInt. J. Solids Struct.37781808MATHGoogle Scholar
  15. Kolednik, O., Predan, J., Shan, G.X., Simha, N.K., Fischer, F.D. 2005On the fracture behavior of inhomogeneous materials – a case study for elastically inhomogeneous bimaterialsInternational Journal of Solids Structures42605620MATHGoogle Scholar
  16. Maugin, G.A. 1993Material Inhomogenieties in ElasticityChapman and HallLondonGoogle Scholar
  17. Maugin, G.A. 1995Material forces: Concepts and applicationsASME Appl. Mech. Rev.48213245MathSciNetCrossRefGoogle Scholar
  18. Maugin, G.A., Trimarco, C. 1992Pseudo-momentum and material forces in nonlinear elasticity: Variational formulation and application to brittle fractureActa Mech94128CrossRefMathSciNetMATHGoogle Scholar
  19. Mueller, R., Gross, D., Maugin, G.A. 2004Use of material forces in adaptive finite element methodsComp. Mech.33421434CrossRefADSMATHGoogle Scholar
  20. Mueller, R., Kolling, S., Gross, D. 2002On configurational forces in the context of the finite element methodInt. J. Numer. Meth. Eng.5315571574CrossRefMathSciNetMATHGoogle Scholar
  21. Mueller, R., Maugin, G.A. 2002On material forces and finite element discretizationsComp. Mech.295260CrossRefADSMathSciNetMATHGoogle Scholar
  22. Miyamoto, H. and Kikuchi, M. (1980). In: Proceedings of the Second International Conference in Numerical Methods in Fracture Mechanics (edited by Owen, D.R.J. and Luxmore, A.R.), PineRidge Press, Swansea, UK, 359–370.Google Scholar
  23. Muju, S. 2000Crack propagation in bimaterial multilayered periodically microcracking composite mediaCompos. Sci. Technol.6022132221CrossRefGoogle Scholar
  24. Pippan, R., Flechsig, K. 2000Fatigue crack propagation behavior in the vicinity of an interface between materials with different yield stressesMat. Sci. Eng.A283225233Google Scholar
  25. Rice, J.R. (1968). Mathematical analysis in the Mechanics of Fracture, in Fracture (edited by Liebowitz, H.), Vol. II. Academic Press, 379–386.Google Scholar
  26. Simha, N.K. 2000Toughening by phase boundary propagationJ. Elasticity59195211CrossRefMATHGoogle Scholar
  27. Simha, N.K., Bhattacharya, K. 1998Kinetics of a phase boundary with edges and junctionsJournal of the Mechanics and Physics of Solids4623232359CrossRefMathSciNetMATHADSGoogle Scholar
  28. Simha, N.K., Fischer, F.D., Kolednik, O., Chen, C.R. 2003Inhomogeneity effects on the crack driving force in elastic and elastic-plastic materialsJournal of the Mechanics and Physics of Solids51209240CrossRefMathSciNetMATHADSGoogle Scholar
  29. Steinmann, P. 2000Application of material forces to hyperelastostatic fracture mechanics. Part I: Continuum mechanical settingInternational Journal of Solids Structures3773717391MATHMathSciNetGoogle Scholar
  30. Steinmann, P., Ackermann, D., Barth, F.J. 2001Application of material forces to hyperelastostatic fracture mechanics. Part II: Computational SettingInternational Journal of Solids Structures3855095526MATHGoogle Scholar
  31. Smelser, R.E., Gurtin, M.E. 1977On the J-Integral for bi-material bodiesInt. J. Fracture13382384Google Scholar
  32. Suresh, S., Sugimura, Y., Tschegg, E. 1992The growth of a fatigue crack approaching a perpendicularly-oriented, bimaterial interfaceScripta Metall.2711891194Google Scholar
  33. Timoshenko, S. 1959Theory of ElasticityMcGraw-HillNew YorkGoogle Scholar
  34. Truskinovsky, L. 1982Equilibrium interphase boundariesDokl. Akad. Nauk. SSSR.275306310Google Scholar
  35. Weichert, D., Schulz, M. 1993 J-integral concept for multi-phase materialsComput. Mat. Sci.1241248Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • N. K. Simha
    • 1
  • F. D. Fischer
    • 2
    • 3
    • 4
  • O. Kolednik
    • 3
    • 4
  • J. Predan
    • 5
  • G. X. Shan
    • 6
  1. 1.Department of Orthopaedic SurgeryUniversity of MinnesotaMinneapolisUSA
  2. 2.Institute of MechanicsMontanuniversitätLeobenAustria
  3. 3.Erich Schmid Institute of Materials ScienceAustrian Academy of SciencesLeobenAustria
  4. 4.Materials Center LeobenLeobenAustria
  5. 5.Faculty of Mechanical EngineeringUniversity of MariborMariborSlovenia
  6. 6.VOEST Alpine Industrieanlagenbau GmbH&CoLinzAustria

Personalised recommendations