Skip to main content
Log in

Similarity Transformations of Hermitian Hamiltonians and Pseudo-Hermitian Coupling Between Two Electromagnetic Modes

  • Published:
Foundations of Physics Letters

Abstract

Pseudo-Hermitian Hamiltonians and pseudo-Hermitian coupling between two electromagnetic modes are analyzed by using similarity transformations of Hermitian Hamiltonians or of Hermitian operators, including a special metric and biorthogonal relations replacing the usual orthogonal relations used in quantum mechanics. The coupling between two electromagnetic (em) modes including certain decay and amplification processes is related to a coupling matrix G which has parity-time (PT) symmetry and which obeys the pseudo-Hermiticity condition ηGη−1 = G where η is a metric. The linear equations representing the pseudo-Hermitian coupling between the two em modes are diagonalized, in the interaction picture, by introducing ‘dressed’ α¯ and β~ operators which have real or pure imaginary eigenfrequencies. The commutation-relations (CR) for the α~ and β~ operators and for the two-mode operators ā and b~, in the interaction picture and under the condition of real eigenfrequencies are obtained by the use of the pseudo-Hermiticity property of the G matrix. These CR for real eigenfrequencies, are preserved in time without any Langevin noise terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. M.C. Pease, Methods of Matrix Algebra (Academic, New York, 1965).

    MATH  Google Scholar 

  2. 2. Y. Ben-Aryeh, A. Mann, and I. Yaakov, J. Phys. A: Math. Gen. 37, 12059 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  3. 3. P.A. M. Dirac, Proc. Roy. Soc. A 180, 1 (1942).

    ADS  MathSciNet  Google Scholar 

  4. 4. W. Pauli, Rev. Mod. Phys. 15, 175 (1943).

    Article  ADS  MathSciNet  Google Scholar 

  5. 5. T. D. Lee and G. C. Wick, Nuc. Phys. B 9, 209 (1969).

    Article  ADS  MathSciNet  Google Scholar 

  6. 6. F. G. Scholtz, H.B. Geyer, and F. J. W. Hahne, Ann. Phys. 213, 74 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  7. 7. Y. Ben-Aryeh and R. Barak, Phys. Lett. A 351, 388 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  8. 8. A. Mostafazadeh, J. Math. Phys. 43, 205, 3944 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  9. 9. Y. Ben-Aryeh, J. Opt B: Quantum Semiclass. Opt 7, S452 (2005).

    Article  MathSciNet  Google Scholar 

  10. 10. W. H. Louisell, Radiation and Noise in Quantum Electronics (McGraw-Hill, New York, 1964).

    Google Scholar 

  11. 11. C. M. Bender, D. C. Brody, and H. F.Jones, Phys. Rev. Lett. 89, 270401 (2002).

    Article  MathSciNet  Google Scholar 

  12. 12. C. M. Bender, D.C. Brody, and H. F. Jones, Am. J. Phys. 71, 1095 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  13. 13. V. V. Dodonov and V. I. Man'ko, Invariants and the Evolution of Nonstationary Quantum Systems, M. A. Markov, ed. (Nova Science, Commack, NY, 1989).

    Google Scholar 

  14. 14. O. Man'ko, V. I. Man'ko, and G. Marmo, J. Phys. A: Math. Gen. 35, 699 (2002).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Ben-Aryeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Aryeh, Y. Similarity Transformations of Hermitian Hamiltonians and Pseudo-Hermitian Coupling Between Two Electromagnetic Modes. Found Phys Lett 19, 747–756 (2006). https://doi.org/10.1007/s10702-006-1062-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10702-006-1062-x

Key words:

Navigation