Advertisement

Foundations of Physics Letters

, Volume 19, Issue 2, pp 143–155 | Cite as

A Stochastic Mechanics Based on Bohm‧s Theory and its Connection with Quantum Mechanics

  • Boon Leong Lan
  • Ying Oon Tan
Original Article
  • 80 Downloads

Abstract

We construct a stochastic mechanics by replacing Bohm‧s first-order ordinary differential equation of motion with a stochastic differential equation where the stochastic process is defined by the set of Bohmian momentum time histories from an ensemble of particles. We show that, if the stochastic process is a purely random process with n-th order joint probability density in the form of products of delta functions, then the stochastic mechanics is equivalent to quantum mechanics in the sense that the former yields the same position probability density as the latter. However, for a particular non-purely random process, we show that the stochastic mechanics is not equivalent to quantum mechanics. Whether the equivalence between the stochastic mechanics and quantum mechanics holds for all purely random processes but breaks down for all non-purely random processes remains an open question.

Key words:

Bohmian mechanics stochastic differential equation stochastic process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. D. Kershaw, Phys. Rev. 136, B1850 (1964).CrossRefMathSciNetGoogle Scholar
  2. 2.
    2. E. Nelson, Phys. Rev. 150, 1079 (1966).CrossRefADSGoogle Scholar
  3. 3.
    3. L. de. la. Pena-Auerbach, Phys. Lett. A 24, 603 (1967).CrossRefADSGoogle Scholar
  4. 4.
    4. L. de. la. Pena-Auerbach, Phys. Lett. A 27, 594 (1968).CrossRefADSGoogle Scholar
  5. 5.
    5. L. de. la. Pena-Auerbach, J. Math. Phys. 10, 1620 (1969).CrossRefMATHADSGoogle Scholar
  6. 6.
    6. L. Bess, Prog. Theor. Phys. 49, 1889 (1973).CrossRefADSGoogle Scholar
  7. 7.
    7. F. Guerra, Phys. Rep. 77, 263 (1981).CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    8. M. Baublitz Jr., Prog. Theor. Phys. 80, 232 (1988).CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    9. H. Okamoto, J. Phys. A: Math, Gen. 23, 5535 (1990).CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    10. B. C. Levy and A. J. Krener, J. Math. Phys. 37, 796 (1996).CrossRefMathSciNetGoogle Scholar
  11. 11.
    11. L. S. F. Olavo, Physica A 262, 197 (1999).CrossRefMathSciNetGoogle Scholar
  12. 12.
    12. L. S. F. Olavo, Physica A 271, 260 (1999).CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    13. L. S. F. Olavo, A. F. Bkuzis, and R. Q. Amilcar, Physica A 271, 303 (1999).CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    14. L. S. F. Olavo, Phys. Rev. A 61, 052109 (2000).CrossRefADSGoogle Scholar
  15. 15.
    15. M. Jammer, The Philosophy of Quantum Mechanics (Wiley, New York, 1974).Google Scholar
  16. 16.
    16. L. F. Kracklauer, Phys. Rev. D 10, 1358 (1974).CrossRefADSGoogle Scholar
  17. 17.
    17. E. Nelson, Quantum Fluctuations (Princeton University, Princeton, 1985).MATHGoogle Scholar
  18. 18.
    18. E. Nelson, Stochastic Processes in Classical and Quantum Systems (Lecture Notes in Physics 262) (Springer, Berlin, 1986), pp. 438–469.Google Scholar
  19. 19.
    19. J. G. Gilson, Proc. Cambridge Phil. Soc. 64, 1061 (1968).CrossRefGoogle Scholar
  20. 20.
    20. T. C. Wallstrom, Found. Phys. Lett. 2, 113 (1989).CrossRefMathSciNetGoogle Scholar
  21. 21.
    21. N. Saito and M. Namiki, Prog. Theor. Phys. 16, 71 (1956).CrossRefADSMATHGoogle Scholar
  22. 22.
    22. A. Klein, Phys. Rep. 77, 329 (1981).CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    23. L. de la Pena and A. M. Cetto, Found. Phys. 12, 1017 (1982).CrossRefMathSciNetADSGoogle Scholar
  24. 24.
    24. A. Cassa, J. Math. Phys. 42, 5143 (2001).CrossRefADSMATHMathSciNetGoogle Scholar
  25. 25.
    25. B. L. Lan, Phys. Rev. A 63, 042105 (2001).CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    26. B. L. Lan, Phys. Rev. A 65, 032117 (2002).CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    27. W. T. Coffey Y. P. Kalmykov and J. T. Waldron, The Langevin Equation: With Applications in Physics, Chemistry and Electrical Engineering (World Scientific, Singapore, 1996).MATHGoogle Scholar
  28. 28.
    28. D. Bohm, Phys. Rev. 85, 166 (1952).CrossRefADSMATHMathSciNetGoogle Scholar
  29. 29.
    29. D. Bohm, Phys. Rev. 85, 180 (1952).CrossRefADSMATHMathSciNetGoogle Scholar
  30. 30.
    30. D. Bohm and B. J. Hiley, The Undivided Universe (Routledge, London, 1993).Google Scholar
  31. 31.
    31. L. E. Reichl. A Modern Course in Statistical Physics, 2nd edn. (Wiley, New York, 1998).MATHGoogle Scholar
  32. 32.
    32. P. R. Holland, The Quantum Theory of Motion (University Press, Cambridge, 1993).Google Scholar
  33. 33.
    33. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Corrected and Enlarged Edition (Academic, New York, 1992).Google Scholar
  34. 34.
    34. Y. O. Tan, Equivalence of Stochastic Mechanics with Bohmian Mechanics (Master Thesis, 2004).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.School of EngineeringMonash UniversityMalaysia

Personalised recommendations